Why are earthquakes so hard to predict JeanBaptiste P. Koehl

In 132 CE,

Chinese polymath Zhang Heng

presented the Han court with
his latest invention.

This large vase, he claimed,

could tell them whenever an earthquake
occurred in their kingdom–

including the direction
they should send aid.

The court was somewhat skeptical,

especially when the device triggered
on a seemingly quiet afternoon.

But when messengers came
for help days later,

their doubts turned to gratitude.

Today, we no longer rely on pots to
identify seismic events,

but earthquakes still offer a unique
challenge to those trying to track them.

So why are earthquakes so
hard to anticipate,

and how could we get better
at predicting them?

To answer that,

we need to understand some theories
behind how earthquakes occur.

Earth’s crust is made from several vast,
jagged slabs of rock

called tectonic plates,

each riding on a hot, partially molten
layer of Earth’s mantle.

This causes the plates to
spread very slowly,

at anywhere from 1 to 20
centimeters per year.

But these tiny movements are powerful
enough

to cause deep cracks in the
interacting plates.

And in unstable zones,

the intensifying pressure may
ultimately trigger an earthquake.

It’s hard enough to monitor these
miniscule movements,

but the factors that turn shifts into
seismic events are far more varied.

Different fault lines juxtapose
different rocks–

some of which are stronger–or weaker–
under pressure.

Diverse rocks also react differently to
friction and high temperatures.

Some partially melt, and can release
lubricating fluids

made of superheated minerals

that reduce fault line friction.

But some are left dry,

prone to dangerous build-ups of pressure.

And all these faults are subject to
varying gravitational forces,

as well as the currents of hot rocks
moving throughout Earth’s mantle.

So which of these hidden variables
should we be analyzing,

and how do they fit into our
growing prediction toolkit?

Because some of these forces occur
at largely constant rates,

the behavior of the plates
is somewhat cyclical.

Today, many of our most reliable clues
come from long-term forecasting,

related to when and where earthquakes
have previously occurred.

At the scale of millennia,

this allows us to make predictions
about when highly active faults,

like the San Andreas,

are overdue for a massive earthquake.

But due to the many variables involved,

this method can only predict
very loose timeframes.

To predict more imminent events,

researchers have investigated the
vibrations Earth elicits before a quake.

Geologists have long used seismometers

to track and map these tiny shifts
in the earth’s crust.

And today, most smartphones are
also capable

of recording primary seismic waves.

With a network of phones around the globe,

scientists could potentially
crowdsource a rich,

detailed warning system that alerts
people to incoming quakes.

Unfortunately, phones might not be able
to provide the advance notice needed

to enact safety protocols.

But such detailed readings
would still be useful

for prediction tools like NASA’s
Quakesim software,

which can use a rigorous blend of
geological data

to identify regions at risk.

However, recent studies indicate

the most telling signs of a quake might be
invisible to all these sensors.

In 2011,

just before an earthquake struck
the east coast of Japan,

nearby researchers recorded surprisingly
high concentrations

of the radioactive isotope pair:
radon and thoron.

As stress builds up in the crust right
before an earthquake,

microfractures allow these gases
to escape to the surface.

These scientists think that if we built
a vast network of radon-thoron detectors

in earthquake-prone areas,

it could become a promising
warning system–

potentially predicting quakes
a week in advance.

Of course,

none of these technologies
would be as helpful

as simply looking deep inside
the earth itself.

With a deeper view we might be able

to track and predict large-scale
geological changes in real time,

possibly saving tens of thousands
of lives a year.

But for now,

these technologies can help us prepare
and respond quickly to areas in need–

without waiting for directions
from a vase.

公元 132 年,

中国博学家张衡

将他的最新发明呈献给了汉朝宫廷

他声称,这个大花瓶

可以在他们的王国发生地震时告诉他们——

包括
他们应该派出援助的方向。

法庭有些怀疑,

尤其是当设备
在看似安静的下午触发时。


几天后,当信使前来寻求帮助时,

他们的怀疑变成了感激。

今天,我们不再依赖罐来
识别地震事件,

但地震仍然
给那些试图追踪它们的人带来了独特的挑战。

那么为什么地震如此
难以预测

,我们如何才能更好
地预测它们呢?

要回答这个问题,

我们需要了解
地震如何发生的一些理论。

地壳是由几块巨大的、
锯齿状的岩石

板块构成的,这些板块被称为构造板块,

每块板块都坐落在地幔的一个热的、部分熔融的
层上。

这导致板块
传播非常缓慢,

每年传播 1 到 20
厘米。

但这些微小的运动足够强大,
足以

在相互作用的板块中造成深深的裂缝

在不稳定地区,

不断增加的压力可能
最终引发地震。

监测这些微小的运动已经足够困难了

但将转变转变为
地震事件的因素则要多样化得多。

不同的断层线并列着
不同的岩石

——其中一些在压力下更强或更弱

不同的岩石对
摩擦和高温的反应也不同。

有些部分熔化,并且可以释放

由过热矿物制成的润滑液,

从而减少断层线的摩擦。

但有些是干燥的,

容易产生危险的压力积聚。

所有这些断层都受到
不同的重力

以及在地幔中移动的热岩流的影响

那么我们应该分析这些隐藏变量中的哪些

以及它们如何适应我们
不断增长的预测工具包?

因为这些力中的一些
以基本恒定的速率发生,

所以板块的行为
有点周期性。

今天,我们许多最可靠的线索
来自长期预测,

与以前发生地震的时间和地点有关

在数千年的尺度上,

这使我们能够预测
像圣安德烈亚斯这样的高度活跃的断层何时会

发生大地震。

但由于涉及的变量很多,

这种方法只能预测
非常松散的时间范围。

为了预测更多迫在眉睫的事件,

研究人员调查
了地震前地球引发的振动。

地质学家长期以来一直使用地震仪

来跟踪和绘制
地壳中的这些微小变化。

而今天,大多数智能手机也

能够记录初级地震波。

借助遍布全球的电话网络,

科学家们可能会
众包一个丰富、

详细的预警系统,以提醒
人们即将到来的地震。

不幸的是,电话可能
无法提供制定安全协议所需的提前通知

但如此详细的读数

对于 NASA 的 Quakesim 软件等预测工具仍然有用

该软件可以使用严格的
地质数据组合

来识别处于危险中的区域。

然而,最近的研究

表明,所有这些传感器可能都看不到最明显的地震迹象

2011 年,

就在
日本东海岸发生地震之前,

附近的研究人员记录到了令人惊讶的

浓度放射性同位素对:
氡和钍。

随着地震前地壳中压力的增加

微裂缝使这些
气体逸出到地表。

这些科学家认为,如果我们在地震多发地区建立
一个庞大的氡钍探测器网络

它可能成为一个很有前途的
预警系统——有

可能
提前一周预测地震。

当然,

这些技术
都不会

像简单地
深入地球本身那样有用。

通过更深入的了解,我们或许

能够实时跟踪和预测大规模的
地质变化,每年

可能挽救数万人
的生命。

但就目前而言,

这些技术可以帮助我们准备好
并快速响应有需要的地区——

而无需
等待花瓶的指示。