How to squeeze electricity out of crystals Ashwini Bharathula

This is a crystal of sugar.

If you press on it, it will actually
generate its own electricity.

How can this simple crystal
act like a tiny power source?

Because sugar is piezoelectric.

Piezoelectric materials
turn mechanical stress,

like pressure,

sound waves,

and other vibrations

into electricity and vice versa.

This odd phenomenon was first
discovered

by the physicist Pierre Curie
and his brother Jacques in 1880.

They discovered that if they compressed
thin slices of certain crystals,

positive and negative charges would appear
on opposite faces.

This difference in charge, or voltage,

meant that the compressed crystal
could drive current through a circuit,

like a battery.

And it worked the other way around, too.

Running electricity through these crystals
made them change shape.

Both of these results,

turning mechanical energy into electrical,

and electrical energy into mechanical,

were remarkable.

But the discovery went uncelebrated
for several decades.

The first practical application
was in sonar instruments

used to detect German submarines
during World War I.

Piezoelectric quartz crystals
in the sonar’s transmitter

vibrated when they were subjected
to alternating voltage.

That sent ultrasound waves
through the water.

Measuring how long it took these waves
to bounce back from an object

revealed how far away it was.

For the opposite transformation,

converting mechanical energy
to electrical,

consider the lights that turn on
when you clap.

Clapping your hands send sound vibrations
through the air

and causes the piezo element to bend
back and forth.

This creates a voltage that can drive
enough current to light up the LEDs,

though it’s conventional sources
of electricity that keep them on.

So what makes a material piezoelectric?

The answer depends on two factors:

the materials atomic structure,

and how electric charge
is distributed within it.

Many materials are crystalline,

meaning they’re made of atoms or ions

arranged in an orderly
three-dimensional pattern.

That pattern has a building block
called a unit cell

that repeats over and over.

In most non-piezoelectric
crystalline materials,

the atoms in their unit cells
are distributed symmetrically

around a central point.

But some crystalline materials
don’t possess a center of symmetry

making them candidates
for piezoelectricity.

Let’s look at quartz,

a piezoelectric material
made of silicon and oxygen.

The oxygens have a slight negative charge
and silicons have a slight positive,

creating a separation of charge,

or a dipole along each bond.

Normally, these dipoles
cancel each other out,

so there’s no net separation of charge
in the unit cell.

But if a quartz crystal is squeezed
along a certain direction,

the atoms shift.

Because of the resulting asymmetry
in charge distribution,

the dipoles no longer cancel
each other out.

The stretched cell ends up
with a net negative charge on one side

and a net positive on the other.

This charge imbalance is repeated
all the way through the material,

and opposite charges collect
on opposite faces of the crystal.

This results in a voltage that can
drive electricity through a circuit.

Piezoelectric materials can
have different structures.

But what they all have in common is unit
cells which lack a center of symmetry.

And the stronger the compression
on piezoelectric materials,

the larger the voltage generated.

Stretch the crystal, instead,
and the voltage will switch,

making current flow the other way.

More materials are piezoelectric
than you might think.

DNA,

bone,

and silk

all have this ability to turn
mechanical energy into electrical.

Scientists have created a variety
of synthetic piezoelectric materials

and found applications for them
in everything from medical imaging

to ink jet printers.

Piezoelectricity is responsible for
the rhythmic oscillations

of the quartz crystals
that keep watches running on time,

the speakers of musical birthday cards,

and the spark that ignites the gas
in some barbecue grill lighters

when you flick the switch.

And piezoelectric devices may become
even more common

since electricity is in high demand
and mechanical energy is abundant.

There are already train stations
that use passengers' footsteps

to power the ticket gates and displays

and a dance club where piezoelectricity
helps power the lights.

Could basketball players running back
and forth power the scoreboard?

Or might walking down the street
charge your electronic devices?

What’s next for piezoelectricity?

这是糖的结晶。

如果你按下它,它实际上会
自己发电。

这个简单的水晶怎么能
像一个微小的电源?

因为糖是压电的。

压电材料
将机械应力(

如压力、

声波

和其他振动)

转化为电能,反之亦然。

这种奇怪的现象最早

由物理学家皮埃尔·居里
和他的兄弟雅克于 1880

年发现的。他们发现,如果压缩
某些晶体的薄片,

正电荷和负电荷会出现
在相反的表面上。

这种电荷或电压的差异

意味着压缩晶体
可以驱动电流通过电路,

如电池。

它也反过来起作用。

通过这些晶体通电
使它们改变形状。

这两个结果,

将机械能转化为电能,将

电能转化为机械能,

都是显着的。

但这一发现
几十年来一直无人问津。

第一个实际应用
是在第一次世界大战期间

用于探测德国潜艇的声纳仪器

声纳发射器中的压电石英晶体在

受到交流电压时会振动

那是
通过水发送超声波。

测量这些波
从物体反弹回来需要多长时间才能

揭示它有多远。

对于相反的转换,

将机械能转换
为电能,请

考虑拍手时打开的灯

拍手会
在空气中发出声音振动,

并导致压电元件
来回弯曲。

这会产生一个电压,可以驱动
足够的电流来点亮 LED,

尽管它是
让 LED 保持点亮的传统电源。

那么是什么使材料具有压电性呢?

答案取决于两个因素

:材料的原子结构,

以及电荷
在其中的分布方式。

许多材料是结晶的,

这意味着它们是由以有序的三维模式排列的原子或离子

组成的

该模式有一个
称为单元格

的构建块,它一遍又一遍地重复。

在大多数非压电
晶体材料中,

其晶胞中的原子

围绕中心点对称分布。

但是一些晶体材料
不具备对称中心,

这使得它们
成为压电材料的候选者。

让我们看看石英,

一种
由硅和氧制成的压电材料。

氧带有轻微的负电荷,
而硅带有轻微的正

电荷,从而产生电荷分离,

或沿每个键形成偶极子。

通常,这些偶极子
相互抵消,

因此单元电池中没有电荷的净分离

但是如果石英晶体
沿某个方向被挤压

,原子就会移动。

由于由此产生
的电荷分布不对称

,偶极子不再
相互抵消。

拉伸的电池最终
一侧带有净负电荷,

另一侧带有净正电荷。

这种电荷不平衡
在整个材料中不断重复

,相反的电荷聚集
在晶体的相对面上。

这会产生可以
驱动电流通过电路的电压。

压电材料可以
具有不同的结构。

但它们的共同点是
缺乏对称中心的晶胞。

而且对压电材料的压缩越强

产生的电压就越大。

相反,拉伸晶体
,电压将切换,

使电流以另一种方式流动。

压电材料
比你想象的要多。

DNA、

骨头

和丝绸

都具有将
机械能转化为电能的能力。

科学家们创造了
多种合成压电材料,

并发现它们
在从医学成像

到喷墨打印机的所有领域都有应用。

压电负责

使手表保持准时运行的石英晶体、

音乐生日贺卡的扬声器

以及在您轻弹开关时点燃
一些烧烤炉打火机中气体的火花的有节奏的振荡

。 由于电力需求量大

且机械能丰富,压电设备可能会变得
更加普遍

已经有
火车站使用乘客的脚步

为检票口和显示器供电,

还有一个舞蹈俱乐部,压电
有助于为灯光供电。

来回奔跑的篮球运动员能否
为记分牌提供动力?

或者走在街上可能会为
您的电子设备充电?

压电的下一步是什么?