Solomon GoldsteinRose How much clean electricity do we really need TED Countdown

Hello, how is everyone feeling?

(Cheers)

Are you ready to solve climate change?

(Cheers)

Good.

Do you know what a pettawat hour is?

Yeah, it’s a unit of energy like
kilowatt hour or megawatt hour.

I’ve been a climate activist since age 11

and I studied engineering,

and so I was familiar with those terms.

Kilowatt, megawatt,
even gigawatt and terawatt.

But I had never heard of a petawatt hour

until I wrote a book
on climate change solutions.

That’s because it’s so big.

But that’s the scale I want to talk about.

A petawatt hour is a trillion
kilowatt hours.

And today the world generates
about 25 trillion kilowatt hours

of electricity each year.

Most of that is from
fossil-fuel power plants,

and the dominant mindset
is that we have to change

the current electricity system

by replacing those fossil-fuel plants

with clean generation by 2050.

Well, over one third of our electricity
generation is already clean,

mostly from hydro and nuclear,

along with wind and solar,

and clean generation is growing.

Projections based on current policies
around the world show

that we are on track
to have about 25 petawatt hours

of clean electricity generation in 2050.

That’s two and a half times today’s
amount of clean generation

and equal to today’s total generation.

So this is great.

We can replace all our fossil fuel plants,

have a clean version of today’s world,

walk away, we’ve solved climate change.

Thank you very much.

Oh, but I did forget
one tiny little detail.

We actually need five times that much.

To be clear, we need
and we’re on track to have

two and a half times
today’s amount of clean generation

to switch to a clean version
of our current electricity system.

But changing the current
system isn’t enough.

We need five times that,

all of it clean,

or 12 times today’s clean
electricity production,

to actually avoid the worst
impacts of climate change.

Can I repeat that?

To avoid the worst
impacts of climate change,

we have to multiply today’s clean
electricity production by 12 times.

There are four main reasons
we need that much.

First, let’s keep in mind scientists’
goalpost for addressing climate change:

achieving net-negative emissions
globally by around 2050.

Most of us know that to do so,

we’ll have to electrify
a whole range of vehicles,

heating systems
and some industrial processes.

Electric equipment is more efficient
than fuel-based equipment.

So electrification actually lowers
total global energy demand,

but it increases
electricity generation needed.

In our current energy world,

electrifying 60 percent,
which is ambitious,

would add enough demand

that we would need roughly
40 petawatt hours

of total electricity generation by 2050.

Second, it’s not OK to simply replace
today’s world with a clean version.

In today’s world,

over 700 million people
don’t have access to electricity.

Billions more have access
only to small amounts

or to unreliable supply
that often cuts out.

Energy demand in rich industrialized
countries will grow more slowly

over the next few decades
with increased efficiency.

But energy demand in developing countries
will continue to grow dramatically,

especially if we can make
electricity cheaper.

This is good.

Energy access is lifting people
out of poverty,

driving access to education,

commerce, health care
and lower birth rates.

Both for moral and practical reasons,

those of us in richer countries need to
realize that addressing climate change

will necessarily center

on a massive expansion of energy access
in developing countries.

So electricity generation
will have to grow even more

and get cheaper

to accommodate
global economic development.

Based on projections of global
development by 2050,

generation needed rises to 60
petawatt hours per year.

The third reason is a bit more debatable,

but it needs to be talked about
more in public discourse.

It has to do with the fact

that not everything
can be electrified by 2050.

Long-range airplanes, for instance,

are still going to need the energy
density of a liquid fuel.

Similar for some industrial processes.

Now, many models waive this issue away
with two overoptimistic assumptions:

that all those factories continue burning
fossil fuels but use carbon capture,

which costs extra and will only happen
where governments mandate it,

and that all those long-range vehicles
use sustainable biofuel,

which is only sustainable
if every supplying country,

and its local governments,

fully enforces strict
standards for biomass

to avoid deforestation and other impacts

that could increase
emissions from agriculture.

Some amount of carbon capture at factories
and sustainable bioenergy

will absolutely be part of the picture.

But I’ve been in politics,

and I am sure that we should plan
for imperfect policy.

And that means we need to plan

for building even more
electricity generation.

We can use this additional generation
to synthesize fuels

that are truly carbon neutral
or entirely carbon free:

hydrogen, ammonia,
synthetic jet fuel and others.

This is a much rougher estimate,

but to be confident of minimizing
climate change impacts,

we should aim to push our line
up to around 90 petawatt hours per year.

Finally, the fourth reason
is that we need not only net-zero

but net-negative emissions in 2050.

There will be some non-energy emissions
that remain, especially from agriculture.

And we’ll have to pull CO2
from the atmosphere

to make up for those.

But we also need to use all
our possible carbon-removal methods

at their maximum capacity

to remove more CO2 each year,

getting as far as possible
into net-negative emissions,

drawing down levels of greenhouse
gases in the atmosphere

to eventually restore a stable climate.

One of the carbon-removal methods
we’ll have to use is direct air-capture:

arrays of fans filtering CO2 from the air.

And doing enough of this to restore
safe temperatures within decades,

not centuries,

will require yet more
electricity generation.

Again, the exact amount depends
on quite how ambitious we’re able to be.

But for a comfortable rate
of carbon removal,

we would need perhaps 120
petawatt hours per year total.

So roughly five times today’s total
global electricity system,

12 times today’s clean
electricity production,

and that can actually achieve
net-negative emissions globally.

And there’s a bonus reason to consider.

Because clean electricity
is going to power so much

of the rest of the transition:
electrification, global development,

synthesized fuels and sequestration,

to achieve net-negative emissions by 2050,

we should really build as much as possible

of that new electricity generation

at the beginning
of the transition, starting now.

This will make sure
that clean electricity is abundant

and cheap soon enough

to still leave time for all of the other
transitions that rely on it

to fully roll out by 2050.

And when we talk about abundant
and cheap electricity,

we’re talking about eliminating
poverty faster,

powering access to water desalination,

strengthening medical supply chains,

so much more.

Decarbonizing and scaling
electricity generation

will also be the biggest global
development project ever.

So if we want to avoid
the worst of climate change,

we need to discard that dominant mindset

about merely replacing
fossil fuel generation.

My point is, that misses the scale.

Our project is not changing
the current global electricity system.

Our project is building a new
global electricity system.

Political action that tinkers around
within the current system

will never get us
where we need to be by 2050.

Arguments over which sources of clean
electricity we should use are unhelpful.

We need all of them:

hydro, solar, wind,
nuclear, advanced nuclear,

advanced geothermal,

mandates for carbon capture
on remaining fossil plants.

If you look at the potential rates
of addition for each of these,

you’ll see we need everything
as much as possible

and we may still fall short.

It’s not changing the electricity system.

It’s building a new electricity system.

One five times bigger
than today’s total system

and 100 percent clean.

As fellow youth activists often say,

the project is much more comparable

to the World War II-era manufacturing boom

than anything the world has done since.

Building new things
that we’ve barely ever built before,

in massive amounts,
to create a new system entirely.

In fact, this mindset goes beyond
electricity-generation itself.

Many people are wary
of ambitious climate action

because they see the project as changing
the familiar current world.

That’s not it.

Addressing climate change
means building a new world.

A world in which energy is healthier,

doesn’t pollute the air we breathe

and where it’s cheaper and everyone
globally has access to it.

A world with higher incomes,

longer and better lives,

greater equality.

A better world.

Thank you, and let’s make it happen.

(Applause)

你好,大家感觉怎么样?

(欢呼声)

你准备好应对气候变化了吗?

(欢呼)

很好。

你知道什么是pettawat小时吗?

是的,它是一个能量单位,如
千瓦时或兆瓦时。

我从 11 岁起就一直是气候活动家

,我学习工程学

,所以我熟悉这些术语。

千瓦,兆瓦,
甚至千兆瓦和太瓦。

但在

我写了一本
关于气候变化解决方案的书之前,我从未听说过拍瓦时。

那是因为它太大了。

但这就是我要谈论的规模。

一拍瓦时是一万
亿千瓦时。

今天,世界每年产生
约 25 万亿千瓦时

的电力。

其中大部分来自
化石燃料发电厂

,主要的想法
是我们必须在 2050 年之前

通过用清洁发电取代那些化石燃料发电厂来改变当前的电力系统。

嗯,我们三分之一以上的
发电已经是清洁的 ,

主要来自水力和核能,

以及风能和太阳能

,清洁发电正在增长。

根据世界各地现行政策的预测
表明

,我们有望在 2050 年
实现约 25 拍瓦时

的清洁发电量。

这是当今
清洁发电量的两倍半

,相当于今天的总发电量。

所以这很棒。

我们可以更换我们所有的化石燃料工厂,

拥有当今世界的清洁版,

走开,我们已经解决了气候变化问题。

非常感谢你。

哦,但我确实忘记了
一个小细节。

我们实际上需要五倍。

需要明确的是,我们需要
并且我们有望将

今天的清洁发电量提高两倍半,

以切换到
我们当前电力系统的清洁版本。

但是改变当前的
系统是不够的。

我们需要五倍,

全部清洁,

或今天清洁
电力生产的 12 倍,

才能真正避免气候变化的最严重
影响。

我可以重复一遍吗?

为了避免
气候变化的最坏影响,

我们必须将今天的清洁
电力产量增加 12 倍。

我们需要这么多有四个主要原因。

首先,让我们牢记
科学家应对气候变化的目标:

到 2050 年左右在全球实现净负排放

。我们大多数人都知道,要做到这一点,

我们必须使
各种车辆、

供暖系统
和一些工业 过程。

电气设备
比基于燃料的设备效率更高。

因此,电气化实际上降低了
全球能源总需求,

但它增加了
所需的发电量。

在我们当前的能源世界中

,雄心勃勃的 60% 电气化

将增加足够的需求

,以至于到 2050 年我们将需要大约
40 拍瓦时

的总发电量。

其次,简单地
用清洁能源取代当今世界是不可行的。

在当今世界,

超过 7 亿
人用不上电。

还有数十亿人
只能获得少量


经常中断的不可靠供应。 未来几十年,随着效率的提高

,富裕工业化
国家的能源需求增长将更加缓慢

但发展中国家的能源需求
将继续大幅增长,

特别是如果我们可以使
电力更便宜的话。

这很好。

能源获取正在使人们
摆脱贫困,

推动获得教育、

商业、医疗保健
和降低出生率。

出于道德和实际原因,

我们这些富裕国家的人需要
认识到,应对气候变化

必然以发展中国家

大规模扩大能源供应为中心

因此,为了适应全球经济发展,发电
量必须增长得更多

并变得更便宜

根据到
2050 年全球发展的预测,

发电需求将上升到
每年 60 拍瓦时。

第三个原因更值得商榷,

但需要
在公共话语中更多地谈论。

这与到 2050 年

并非所有东西
都可以电气化这一事实有关

。例如,远程飞机

仍然需要
液体燃料的能量密度。

对于某些工业过程类似。

现在,许多模型
以两个过于乐观的假设放弃了这个问题

:所有这些工厂继续燃烧
化石燃料但使用碳捕获,

这需要额外的成本并且只会
在政府强制要求的情况下发生,

并且所有这些远程车辆都
使用可持续的生物燃料,

只有每个供应国

及其地方政府

全面执行严格
的生物质标准,

以避免森林砍伐和其他

可能增加
农业排放的影响,这才是可持续的。

工厂的一些碳捕获
和可持续的生物能源

绝对是其中的一部分。

但我一直从事政治工作

,我相信我们应该
为不完善的政策制定计划。

这意味着我们需要

计划建造更多的
发电量。

我们可以使用这一额外的一代
来合成

真正碳中性
或完全无碳的燃料:

氢、氨、
合成喷气燃料等。

这是一个更粗略的估计,

但为了有信心最大限度地减少
气候变化的影响,

我们的目标应该是将我们的生产线
提高到每年大约 90 拍瓦时。

最后,第四个原因
是,到 2050 年,我们不仅需要净零

排放,而且需要净负排放。

还会有一些非能源
排放,尤其是来自农业的排放。

我们必须从大气中提取二氧化碳

来弥补这些。

但我们还需要尽最大努力使用
所有可能的碳去除

方法,

每年去除更多的二氧化碳,

尽可能实现
净负排放,

降低大气中的温室气体含量,

最终恢复稳定的气候 .

我们必须使用的一种碳去除方法是直接空气捕获:

风扇阵列从空气中过滤二氧化碳。

要想
在几十年

而不是几个世纪内恢复安全温度,

就需要更多的
发电量。

同样,确切的数量
取决于我们的雄心壮志。

但是,为了获得舒适
的碳去除率,

我们每年总共可能需要 120
拍瓦时。

因此,大约是当今
全球电力系统总量的

五倍,是当今清洁
电力生产的 12 倍

,这实际上可以
在全球实现净负排放。

还有一个额外的理由需要考虑。

因为清洁
电力将为

过渡的其余部分提供动力:
电气化、全球发展、

合成燃料和封存,

到 2050 年实现净负排放,

我们应该真正


过渡的开始,从现在开始。

这将
确保清洁电力足够充足

且价格低廉,

从而为依赖它的所有其他转型留出时间,以便

2050 年之前全面推出

。当我们谈论充足
且廉价的电力时,

我们正在谈论消除
更快的贫困,

推动海水淡化,

加强医疗供应链

等等。

脱碳和扩大发电规模

也将是有史以来最大的全球
发展项目。

因此,如果我们想避免
最糟糕的气候变化,

我们需要摒弃那种

仅仅取代
化石燃料发电的主导心态。

我的观点是,这错过了规模。

我们的项目不会
改变当前的全球电力系统。

我们的项目正在建设一个新的
全球电力系统。

到 2050 年,在当前系统内修补的政治行动

永远不会让我们
达到我们需要的目标。关于我们应该使用

哪些清洁电力来源的争论
是无益的。

我们需要所有这些:

水电、太阳能、风能、
核能、先进的核能、

先进的地热能、对剩余化石植物

进行碳捕获的授权

如果您查看其中
每一项的潜在添加率,

您会发现我们
尽可能地需要一切,但

我们可能仍然不足。

它不会改变电力系统。

它正在建立一个新的电力系统。

一个
比今天的整个系统大五倍,

并且 100% 清洁。

正如青年活动家常说的那样,

该项目

与二战时期的制造业繁荣

相比,世界上所做的任何事情都更具可比性。

大量构建
我们以前几乎从未构建过的新事物,

以完全创建一个新系统。

事实上,这种心态超越了
发电本身。

许多人
对雄心勃勃的气候行动持谨慎态度,

因为他们认为该项目正在
改变熟悉的当前世界。

不是这个。

应对气候变化
意味着建设一个新世界。

一个能源更健康、

不会污染我们呼吸的空气

、能源更便宜、全球每个人都可以
使用的世界。

一个收入更高、

寿命更长、生活更美好、

更平等的世界。

一个更美好的世界。

谢谢你,让我们实现它。

(掌声)