Dark matter The matter we cant see James Gillies

Translator: Andrea McDonough
Reviewer: Jessica Ruby

The ancient Greeks had a great idea:

The universe is simple.

In their minds,

all you needed to make it were four elements:

earth,

air,

fire,

and water.

As theories go, it’s a beautiful one.

It has simplicity and elegance.

It says that by combining

the four basic elements in different ways,

you could produce all the wonderful diversity of the universe.

Earth and fire, for example,

give you things that are dry.

Air and water, things that are wet.

But as theories go, it had a problem.

It didn’t predict anything that could be measured,

and measurement is the basis of experimental science.

Worse still, the theory was wrong.

But the Greeks were great scientists of the mind

and in the 5th century B.C.,

Leucippus of Miletus came up

with one of the most enduring scientific ideas ever.

Everything we see is made up

of tiny, indivisible bits of stuff called atoms.

This theory is simple and elegant,

and it has the advantage

over the earth, air, fire, and water theory

of being right.

Centuries of scientific thought and experimentation

have established that the real elements,

things like hydrogen,

carbon,

and iron,

can be broken down into atoms.

In Leucippus’s theory, the atom is the smallest,

indivisible bit of stuff that’s still recognizable

as hydrogen,

carbon,

or iron.

The only thing wrong with Leucippus’s idea

is that atoms are, in fact, divisible.

Furthermore, his atoms idea turns out

to explain just a small part

of what the universe is made of.

What appears to be the ordinary stuff of the universe

is, in fact, quite rare.

Leucippus’s atoms, and the things they’re made of,

actually make up only about 5%

of what we know to be there.

Physicists know the rest of the universe,

95% of it,

as the dark universe,

made of dark matter and dark energy.

How do we know this?

Well, we know because we look at things

and we see them.

That might seem rather simplistic,

but it’s actually quite profound.

All the stuff that’s made of atoms is visible.

Light bounces off it, and we can see it.

When we look out into space,

we see stars and galaxies.

Some of them, like the one we live in,

are beautiful, spiral shapes, spinning gracefully through space.

When scientists first measured the motion

of groups of galaxies in the 1930’s

and weighed the amount of matter they contained,

they were in for a surprise.

They found that there’s not enough visible stuff

in those groups to hold them together.

Later measurements of individual galaxies

confirmed this puzzling result.

There’s simply not enough visible stuff in galaxies

to provide enough gravity to hold them together.

From what we can see,

they ought to fly apart, but they don’t.

So there must be stuff there

that we can’t see.

We call that stuff dark matter.

The best evidence for dark matter today

comes from measurements of something

called the cosmic microwave background,

the afterglow of the Big Bang,

but that’s another story.

All of the evidence we have

says that dark matter is there

and it accounts for much of the stuff

in those beautiful spiral galaxies

that fill the heavens.

So where does that leave us?

We’ve long known that the heavens

do not revolve around us

and that we’re residents of a fairly ordinary planet,

orbiting a fairly ordinary star,

in the spiral arm of a fairly ordinary galaxy.

The discovery of dark matter took us

one step further away from the center of things.

It told us that the stuff we’re made of

is only a small fraction of what makes up the universe.

But there was more to come.

Early this century,

scientists studying the outer reaches of the universe

confirmed that not only is everything moving apart

from everything else,

as you would expect in a universe

that began in hot, dense big bang,

but that the universe’s expansion

also seems to be accelerating.

What’s that about?

Either there is some kind of energy

pushing this acceleration,

just like you provide energy to accelerate a car,

or gravity does not behave exactly as we think.

Most scientists think it’s the former,

that there’s some kind of energy driving the acceleration,

and they called it dark energy.

Today’s best measurements allow us to work out

just how much of the universe is dark.

It looks as if dark energy makes up

about 68% of the universe

and dark matter about 27%,

leaving just 5% for us

and everything else we can actually see.

So what’s the dark stuff made of?

We don’t know,

but there’s one theory, called supersymmetry,

that could explain some of it.

Supersymmetry, or SUSY for short,

predicts a whole range of new particles,

some of which could make up the dark matter.

If we found evidence for SUSY,

we could go from understanding 5% of our universe,

the things we can actually see,

to around a third.

Not bad for a day’s work.

Dark energy would probably be harder to understand,

but there are some speculative theories out there

that might point the way.

Among them are theories that go back

to that first great idea of the ancient Greeks,

the idea that we began with several minutes ago,

the idea that the universe must be simple.

These theories predict that there is just a single element

from which all the universe’s wonderful diversity stems,

a vibrating string.

The idea is that all the particles we know today

are just different harmonics on the string.

Unfortunately, string theories today

are, as yet, untestable.

But, with so much of the universe waiting to be explored,

the stakes are high.

Does all of this make you feel small?

It shouldn’t.

Instead, you should marvel

in the fact that, as far as we know,

you are a member of the only species in the universe

able even to begin to grasp its wonders,

and you’re living at the right time

to see our understanding explode.

译者:Andrea McDonough
审稿人:Jessica

Ruby 古希腊人有一个好主意

:宇宙很简单。

在他们的心目中

,你只需要四个元素:

土、

气、

和水。

随着理论的发展,这是一个美丽的。

它具有简约和优雅。

它说,通过

以不同的方式组合四种基本元素,

你可以产生宇宙中所有奇妙的多样性。

例如,土和火

给你干燥的东西。

空气和水,潮湿的东西。

但随着理论的发展,它有一个问题。

它没有预测任何可以测量的东西,

而测量是实验科学的基础。

更糟糕的是,这个理论是错误的。

但是希腊人是伟大的心灵科学家

,在公元前 5 世纪,

米利都的留基普斯提出

了有史以来最持久的科学思想之一。

我们所看到的一切都是由

称为原子的微小的、不可分割的小块组成的。

这个理论简单而优雅,

地、气、火、水理论相比,它具有正确性

的优势。

几个世纪以来的科学思想和实验

已经证明,真正的元素

,如氢、

和铁,

可以分解成原子。

在 Leucippus 的理论中,原子是最小的、

不可分割的物质,仍然可以识别

为氢、

或铁。

Leucippus 的想法唯一错误的

是原子实际上是可分的。

此外,他的原子理论结果

证明只是

解释了宇宙构成的一小部分。

看似宇宙中普通的东西

,其实是相当罕见的。

留基普斯的原子,以及构成它们的物质,

实际上只占

我们所知道的物质的 5%。

物理学家知道宇宙的其余部分,

95%

,是

由暗物质和暗能量组成的暗宇宙。

我们怎么知道呢?

好吧,我们知道是因为我们看事物

并且看到它们。

这可能看起来很简单,

但实际上非常深刻。

所有由原子构成的东西都是可见的。

光从它身上反射回来,我们可以看到它。

当我们眺望太空时,

我们会看到星星和星系。

其中一些,就像我们居住的那个一样,

是美丽的螺旋形状,在空间中优雅地旋转。

当科学家

在 1930 年代首次测量星系群的运动

并称量它们所含物质的数量时,

他们感到惊讶。

他们发现这些群体中没有足够的可见的

东西将它们聚集在一起。

后来对单个星系的测量

证实了这个令人费解的结果。

星系中根本没有足够的可见物质

来提供足够的引力将它们保持在一起。

从我们所见,

它们应该飞散,但事实并非如此。

所以那里一定

有我们看不到的东西。

我们称这种东西为暗物质。

今天暗物质的最好证据

来自

对宇宙微波背景的测量

,即大爆炸的余辉,

但那是另一回事了。

我们所拥有的所有证据都

表明暗物质存在

,它解释了

那些充满天空的美丽螺旋星系中的大部分物质。

那么,我们将何去何从?

我们早就知道,天堂

不是围绕我们转

的,我们是一个相当普通的行星的居民,

绕着一颗相当普通的恒星运行,

在一个相当普通的星系的旋臂中。

暗物质的发现让我们

离事物的中心更远了一步。

它告诉我们,构成我们的

物质只是组成宇宙的一小部分。

但还有更多。

本世纪初,

研究宇宙外围的科学家们

证实,不仅一切都在

与其他一切分开,

正如你在一个

始于炽热、密集的大爆炸的宇宙中所期望的那样,

而且宇宙的膨胀

似乎也在加速 .

那是怎么回事?

要么是某种能量

推动了这种加速度,

就像你提供能量来加速汽车一样,

要么重力的行为与我们想象的不完全一样。

大多数科学家认为是前者

,有某种能量驱动加速

,他们称之为暗能量。

今天最好的测量使我们能够计算

出宇宙中有多少是黑暗的。

看起来暗能量

约占宇宙的 68%

,暗物质约占 27%,

只剩下 5% 留给我们

和其他我们能看到的东西。

那么暗物质是由什么制成的呢?

我们不知道,

但有一种理论,称为超对称

,可以解释其中的一部分。

超对称,简称SUSY,

预测了一系列新粒子,

其中一些可能构成暗物质。

如果我们找到 SUSY 的证据,

我们可以从了解 5% 的宇宙,

即我们实际可以看到的东西,

到大约三分之一。

对于一天的工作来说还不错。

暗能量可能更难理解,

但有一些推测性的理论

可能会指明方向。

其中有一些理论可以

追溯到古希腊人的第一个伟大想法,

即我们几分钟前开始

的想法,即宇宙必须简单的想法。

这些理论预测,

宇宙中所有奇妙的多样性都源于一个单一的元素,

一根振动的弦。

这个想法是,我们今天所知道的所有粒子

都只是弦上的不同谐波。

不幸的是,今天的弦理论

还无法检验。

但是,有这么多宇宙等待探索

,风险很高。

这一切是否让你感到渺小?

它不应该。

相反,你应该惊叹

于这样一个事实,据我们所知,

你是宇宙中唯一

能够开始掌握其奇迹的物种中的一员,

而且你生活在正确的

时间看到我们的理解爆炸 .