A guide to the energy of the Earth Joshua M. Sneideman

Energy is all around us,

a physical quantity that follows
precise natural laws.

Our universe has a finite amount of it;

it’s neither created nor destroyed

but can take different forms,

such as kinetic or potential energy,

with different properties
and formulas to remember.

For instance,

an LED desk lamp’s 6 Watt bulb

transfers 6 Joules
of light energy per second.

But let’s jump back up into space

to look at our planet,
its systems, and their energy flow.

Earth’s physical systems include

the atmosphere, hydrosphere,

lithosphere, and biosphere.

Energy moves in and out of these systems,

and during any energy
transfer between them,

some is lost to the surroundings,

as heat, light, sound,

vibration, or movement.

Our planet’s energy comes from
internal and external sources.

Geothermal energy
from radioactive isotopes

and rotational energy
from the spinning of the Earth

are internal sources of energy,

while the Sun
is the major external source,

driving certain systems,
like our weather and climate.

Sunlight warms the surface and atmosphere
in varying amounts,

and this causes convection,

producing winds
and influencing ocean currents.

Infrared radiation, radiating out
from the warmed surface of the Earth,

gets trapped by greenhouse gases
and further affects the energy flow.

The Sun is also the major source
of energy for organisms.

Plants, algae, and cyanobacteria

use sunlight to produce organic matter

from carbon dioxide and water,

powering the biosphere’s food chains.

We release this food energy
using chemical reactions,

like combustion and respiration.

At each level in a food chain,
some energy is stored

in newly made chemical structures,

but most is lost to the surroundings,

as heat, like your body heat,

released by your digestion of food.

Now, as plants are eaten
by primary consumers,

only about 10% of their total energy
is passed on to the next level.

Since energy can only flow
in one direction in a food chain,

from producers on to consumers
and decomposers,

an organism that eats lower
on the food chain,

is more efficient than one higher up.

So eating producers
is the most efficient level

at which an animal can get its energy,

but without continual input of energy
to those producers,

mostly from sunlight,

life on Earth as we know it
would cease to exist.

We humans, of course, spend our energy
doing a lot of things besides eating.

We travel, we build, we power
all sorts of technology.

To do all this,

we use sources like fossil fuels:

coal, oil, and natural gas,

which contain energy

that plants captured
from sunlight long ago

and stored in the form of carbon.

When we burn fossil fuels in power plants,

we release this stored energy

to generate electricity.

To generate electricity,

heat from burning fossil fuels
is used to power turbines

that rotate magnets,

which, in turn, create
magnetic field changes

relative to a coil of wire,

causing electrons to be
induced to flow in the wire.

Modern civilization depends on our ability

to keep powering that flow of electrons.

Fortunately, we aren’t limited
to burning non-renewable fossil fuels

to generate electricity.

Electrons can also be induced to flow

by direct interaction
with light particles,

which is how a solar cell operates.

Other renewable energy sources,

such as wind, water,

geothermal, and biofuels

can also be used to generate electricity.

Global demand for energy is increasing,

but the planet
has limited energy resources

to access through a complex
energy infrastructure.

As populations rise,

alongside rates of industrialization
and development,

our energy decisions grow
more and more important.

Access to energy
impacts health, education,

political power, and socioeconomic status.

If we improve our energy efficiency,

we can use our natural resources
more responsibly

and improve quality of life for everyone.

能量就在我们身边,

是一个遵循
精确自然法则的物理量。

我们的宇宙是有限的。

它既不会被创造也不会被摧毁,

但可以采取不同的形式,

例如动能或势能,

具有不同的属性
和公式要记住。

例如

,LED 台灯的 6 瓦灯泡每秒可

传输 6 焦耳
的光能。

但是,让我们跳回太空

,看看我们的星球、
它的系统和它们的能量流。

地球的物理系统

包括大气、水圈、

岩石圈和生物圈。

能量进出这些系统,

在它们之间的任何能量传输过程中,

有些能量会

以热、光、声音、

振动或运动的形式流失到周围环境中。

我们星球的能量来自
内部和外部来源。

来自放射性同位素的地

热能和来自地球自转的旋转能

是内部能源,

而太阳
是主要的外部能源,

驱动某些系统,
如我们的天气和气候。

阳光以不同程度加热地表和大气

,这会导致对流,

产生风
并影响洋流。 从地球变暖的表面

辐射出来的红外辐射

被温室气体捕获
并进一步影响能量流。

太阳也是生物体的主要
能量来源。

植物、藻类和蓝藻

利用阳光

从二氧化碳和水中生产有机物,

为生物圈的食物链提供动力。

我们
通过

燃烧和呼吸等化学反应释放这种食物能量。

在食物链的每一层,
一些能量储存

在新形成的化学结构中,

但大部分能量都流失到周围环境中

,就像你的身体热量一样,

通过消化食物释放出来。

现在,
由于初级消费者食用植物

,它们的总能量中只有大约 10%
被传递到下一个层次。

由于能量
在食物链中只能沿一个方向流动,

从生产者流向消费者
和分解者,因此在食物链

中吃得较低的有机体

比较高的有机体更有效率。

因此,进食生产者

是动物获得能量的最有效水平,

但如果没有持续
向这些生产者输入能量,

主要来自阳光,

我们所知道的地球上的生命
将不复存在。

当然,我们人类除了吃饭之外,还会把精力花在
做很多事情上。

我们旅行,我们建造,我们为
各种技术提供动力。

为此,

我们使用化石燃料等资源:

煤炭、石油和天然气,

其中

包含植物
很久以前从阳光中捕获

并以碳形式储存的能量。

当我们在发电厂燃烧化石燃料时,

我们会释放储存的能量

来发电。

为了发电,

燃烧化石燃料产生的热量
被用来驱动涡轮

机旋转磁铁,

这反过来又会产生

相对于线圈的磁场变化,

从而引起电子
在电线中流动。

现代文明取决于我们

持续为电子流提供动力的能力。

幸运的是,我们并不
局限于燃烧不可再生的化石燃料

来发电。

电子也可以

通过
与光粒子的直接相互作用而被诱导流动,

这就是太阳能电池的工作方式。

其他可再生能源,

如风能、水能、

地热能和生物燃料

也可用于发电。

全球对能源的需求正在增加,

但地球

通过复杂的
能源基础设施获取的能源资源有限。

随着人口的

增加以及工业化
和发展的速度,

我们的能源决策变得
越来越重要。

获得能源会
影响健康、教育、

政治权力和社会经济地位。

如果我们提高能源效率,

我们就可以更负责任地使用我们的自然资源,

并提高每个人的生活质量。