A reality check on renewables David MacKay

when the Industrial Revolution started

the amount of carbon sitting underneath

Britain in the form of coal was as big

as the amount of carbon sitting under

Saudi Arabia in the form of oil and this

carbon powered the Industrial Revolution

it put the great in Great Britain and

led to Britain’s temporary world

domination and then in 1918 coal

production in Britain peaked and has

declined ever since

in due course Britain started using oil

and gas from the North Sea and in the

year 2000 oil and gas production from

the North Sea also peaked and they’re

now on the on the decline these

observations about the finiteness of

easily accessible local secure fossil

fuels this is a motivation for saying

well what’s next what is life after

fossil fuels going to be like shouldn’t

we be thinking hard about how to get off

fossil fuels another motivation of

course is climate change and when people

talk about life after fossil fuels and

climate change action I think there’s a

lot of fluff a lot of green wash a lot

of misleading advertising and I feel a

duty as a physicist to try to guide

people round the claptrap and help

people understand the actions that

really make a difference and to focus on

ideas that do add up let me illustrate

this with what physicists call back of

envelope calculation we love back of

envelope calculations you ask a question

you write down some numbers and you get

yourself an answer it may not be very

accurate but it may make you say hmm so

here’s a question imagine if we said oh

yes we can get off fossil fuels we’ll

use biofuels problem-solve transport we

don’t need oil anymore

well what if we grew the biofuels for a

road on the grass verge at the edge of

the road how wide would the verge have

to be for that to work out okay so let’s

put in some numbers let’s have our cars

go at 60 miles per hour let’s say they

do 30

per gallon that’s the European average

for new cars let’s say the productivity

of biofuel plantations is 1200 litres of

biofuel per hectare per year that’s true

of European biofuels and let’s imagine

the cars are spaced 80 metres apart from

each other and they’re just perpetually

going along this road the length of the

road doesn’t matter because the longer

the road the more biofuel plantation

we’ve got what do we do with these

numbers well you take the first number

and you divide by the other three and

you get eight kilometers and that’s the

answer that’s how wide the plantation

would have to be given these assumptions

and maybe that makes you say hmm maybe

this isn’t going to be quite so easy

and it might make you think perhaps is

an issue to do with areas and in this

talk I’d like to talk about land areas

and ask is there an issue about areas

the answer is going to be yes but it

depends which country you are in so

let’s start in the United Kingdom since

that’s where we are today the energy

consumption of the United Kingdom the

total energy consumption not just

transport but everything I like to

quantify it in light bulbs it’s as if

we’ve all got 125 light bulbs on all the

time 125 kilowatt hours per day per

person is the energy consumption of the

UK so there’s 40 light bulbs worth the

transport 40 light bulbs worth for

heating and 40 light bulbs worth for

making electricity and other things are

relatively small compared to those three

big fish it’s actually got a bigger

footprint if we take into account the

embodied energy and the stuff we import

into our country as well and ninety

percent of this energy today still comes

from fossil fuels and ten percent only

from others greener possibly goona

sources like nuclear power and

renewables so that’s the UK and the

population density of the UK is 250

people per square kilometer and I’m now

going to show you other countries by

these same two measures on the vertical

axis I’m going to show you how much

light bulbs what our energy consumption

per person is and we’re at 125

lightbulbs per person and that little

blue dot there is showing you the land

air

year of the United Kingdom and the

population density is on the horizontal

axis and we’re 250 people per square

kilometer let’s add European countries

in blue and you can see there’s quite a

variety I should emphasize both of these

axes are logarithmic as you go from one

gray bar to the next great bar you’re

going up a factor of 10 next let’s add

Asia in red Middle Eastern North Africa

in green sub-saharan Africa in blue

black is South America

purple is Central America and then in

pukey yellow we have North America

Australia and New Zealand and you can

see the great diversity of population

densities and of per capita consumptions

countries are different from each other

top left we have Canada and Australia

with enormous land areas very high per

capita consumption 200 or 300 light

bulbs per person and very low population

densities top right Bahrain has the same

energy consumption per person roughly as

Canada over 300 light bulbs per person

but their population density is a factor

of three hundred times greater a

thousand people per square kilometer

bottom right Bangladesh has the same

population density as Bahrain but

consumes a hundred times less per person

bottom left well there’s no one but

there used to be a whole load of people

here’s another message from this diagram

I’ve added on little blue tails behind

Sudan Libya China India Bangladesh

that’s 15 years of progress where were

they 15 years ago and where are they now

and the message is most countries are

going to the right and they’re going up

up and to the right bigger population

density and higher per capita

consumption so we may be off in the top

right hand corner slightly unusual the

United Kingdom accompanied by Germany

Japan South Korea the Netherlands and a

bunch of other slightly odd countries

but many other countries are coming up

and to the right to come and join us so

we’re a picture if you like of what the

future energy consumption might be

looking like in other countries - and

I’ve also added in this diagram now some

pink lines that go

down and to the right those are lines of

equal power consumption per unit area

which I measure in watts per square

meter so for example the middle line

there 0.1 watts per square meter is the

energy consumption per unit area of

Saudi Arabia Norway Mexico in purple and

Bangladesh 15 years ago and half of the

world’s population lives in countries

that are already above that line the

United Kingdom is consuming 1.25 watts

per square meter shows Germany and Japan

is consuming a bit more

so let’s now say why this is relevant

why is it relevant well we can measure

renewables in the same units and other

forms of power production in the same

units and renewables is one of the

leading ideas for how we could get off

our 90% fossil fuel habit so here comes

from renewables energy crops deliver

harper watt per square meter in european

climates what does that mean and you

might have anticipated that that result

given what I told you about the biofuel

plantation a moment ago

well we consume 1.25 watts per square

meter what this means is even if you

covered the whole of the United Kingdom

with energy crops you couldn’t match

today’s energy consumption wind power

produces a bit more 2.5 watts per square

meter

but that’s only twice as big as 1.25

what’s the square meter so that means if

you wanted literally to produce a total

energy consumption in all forms on

average from wind farms you’d need wind

farms half the area of the UK I’ve got

data back to back up all these

assertions by the way next let’s look at

solar power solar panels when you put

them on a roof deliver about 20 watts

per square meter in England if you

really want to get a lot from solar

panels you need to adopt adopt the

traditional Bavarian farming method

where you leap off the roof and coat the

countryside with solar panels to solar

parks because of the gaps between the

panel’s deliver less they deliver about

5 watts per square meter of land area

and here’s a solar Park in Vermont with

real data delivering 4.2

watts per square meter remember where we

are 1.25 watts per square meter wind

farms 2.5 solar park about five so

whatever whichever of those renewables

you pick the message is whatever mix of

those renewables you’re using if you

want to power the UK on them you’re

going to need to cover something like 20

percent or 25 percent of the country

with those renewables and I’m not saying

that’s a bad idea we just need to

understand the numbers I’m absolutely

not Antti renewables I love renewables

but I’m also Pro arithmetic

concentrating solar power in deserts

delivers larger powers per unit area

because you don’t have the problem of

clouds and so this facility delivers 14

watts per square meter

this 110 watts per square meter and this

one in Spain five watts per square meter

being generous to concentrating solar

power I think it’s probably credible it

could deliver 20 watts per square meter

so that’s that’s nice of course Britain

doesn’t have any deserts yet so here’s a

summary so far all renewables much as I

love them are diffused they all have a

small power per unit area and we have to

live with that fact and that means if

you do want renewables to make a

substantial difference for a country

like the United Kingdom on the scale of

today’s consumption you need to be

imagining renewable facilities that are

country sized not the entire country but

a fraction of the country says a

substantial fraction there are other

options for generating power as well

which don’t involve fossil fuels so

there’s nuclear power and on this

Ordnance Survey map you can see there’s

a size well be inside a blue square

kilometer that’s one gigawatt in a

square kilometer which works out to a

thousand watts per square meter

so by this particular metric nuclear

power isn’t as intrusive as renewables

of course other metrics matter to a

nuclear power has all sorts of

popularity problems but the same goes

for renewables as well here’s a

photograph of a consultation exercise in

full-swing in the little town of

Pennycook just south

just outside Edinburgh and you can see

the children Penacook celebrating the

burning of the effigy of the wind wind

so people are anti everything and we’ve

got to keep all the options on the table

what can a country like the UK do on the

supply side well the options are I’d say

these three are renewables and

recognising that they need to be close

to country size other people’s

renewables so we could go back and talk

very politely to the people in the top

left-hand side of the diagram and say we

don’t want renewables in our backyard

but please could we put min yours

instead and that’s a serious option it’s

a way for the world to to handle this

issue so countries like Australia Russia

Libya Kazakhstan could be our best

friends for renewable production and a

third option is is nuclear power so

that’s some supply-side options in

addition to the supply levers that we

can push and remember we need large

amounts because at the moment we’ll get

90 percent of our energy from fossil

fuels in addition to those levers we

could talk about other ways of solving

this issue namely we could use demand

and that means reducing population I’m

not sure how to do that

all reducing per capita consumption so

let’s talk about three more big levers

that could really help on the

consumption side first transport here

are the physics principles that tell you

how to reduce the energy consumption of

transport and people often say oh yes

technology can answer everything we can

make vehicles that are a hundred times

more efficient and that’s almost true

let me show you the energy consumption

of this typical tank here is 80 kilowatt

hours per hundred person kilometers that

that’s the average European car eighty

kilowatt hours can we make something a

hundred times better by applying those

physics principles I just listed yes

here it is is the bicycle it’s 80 times

better in energy consumption it is

powered by biofuel by Weetabix

and there are other options in between

because maybe the lady in the tank would

say no no that’s a lifestyle change

don’t change my lifestyle please so well

we could persuade her to get into a

train and that’s still a lot more

efficient than a car but that might be

lifestyle change or there’s the eco car

top left it comfortably accommodates one

teenager and it’s shorter than a traffic

cone and it’s almost as efficient as a

bicycle as long as you drive it at 15

miles per hour in between perhaps a more

realistic options on this lever

transport lever are electric vehicles so

electric bikes and electric cars in the

middle perhaps four times as energy

efficient as the standard petrol powered

tank next is the heating lever heating

is a third of our energy consumption in

Britain and quite a lot of that is going

into homes and upper buildings doing

space heating and water heating so

here’s a typical crappy British house

it’s my house with the Ferrari out front

what can we do to it well the laws of

physics are written up there which

describe what how the power the power

consumption for heating is driven by the

things you can control the things you

can you can control the temperature

difference between the inside and the

outside and there’s this remarkable

technology called the thermostat you

grasp it you rotate it to the left and

your energy consumption in the home will

decrease I’ve tried it it works some

people call it a lifestyle change you

can also get the fluff men in to reduce

the leakiness of your building put fluff

in the walls fluff in the roof and a new

front door and so forth and the sad

truth is this will save you money that’s

not sad that’s good but the sad truth is

it’ll only get about 25 percent off the

leakiness of your building if you do

these things which are good ideas if you

really want to get a bit closer to

swedish building standards with a crappy

house like this you need to be putting

external insulation on the building as

shown by this block of plants in london

you can also deliver heat more

efficiently using heat pumps which use a

smaller bit of high-grade energy like

electricity to move heat from your

garden into your house the third demand

side option I want to talk about the

third way to reduce energy consumption

is read young meters and people talk a

lot about smart meters but you can do

yourself use your own eyes and be smart

read your meter and if you’re anything

like me it’ll change your life here’s a

graph I made I was writing a book about

sustainable energy and a friend asked me

well how much energy do you use at home

and I was embarrassed I didn’t actually

know and so I started reading the meter

every week and the old meter readings

are shown in the top half of the graph

and then 2007 is shown in green at the

bottom and that was when I was reading

the meter every week and my life changed

because I’d started doing experiments

and seeing what made a difference and my

gas consumption plummeted because I

started tinkering with the thermostat

and the timing on the heating system and

I knocked more than a half off my gas

bills there’s a similar story for my

electricity consumption where switching

off the DVD players the stereos the

computer peripherals that were on all

the time and just switching them on when

I needed them knocked another third off

my electricity bills

  • so we need a plan that adds up and

I’ve described for you six big levers

and we need big action because we get

90% of our energy from fossil fuels and

so you need to push hard on most if not

all of these levers and most of these

levers have popularity problems and if

there is a lever you don’t like the the

use of well please do bear in mind that

means you need even stronger effort on

the other levers so I’m a strong

advocate advocate of having grown-up

conversations that are based on numbers

and facts and I want to close with this

map that just visualizes for you the

requirement of land and so forth in

order to get just 16 light poles per

person from four of the big possible

sources so if you wanted to get sixteen

light poles remember today our total

energy consumption is 125 lightbulbs

worth if you wanted sixteen from wind

this map visualizes a solution for the

UK it’s got 160 wind farms each one

hundred square kilometres in size and

that would be a 20-fold increase over

today’s amount of wind nuclear power to

get 16 lightbulbs per person you’d need

2 gigawatts at each of the purple dots

on the map that’s a four-fold increase

over today’s levels of nuclear power

biomass to get 16 lightbulbs per person

you need a land area

something like three and a half whales

is worth either in our country or in

someone else’s country possibly Ireland

possibly somewhere else

and the fourth supply-side option

concentrating solar power in other

people’s deserts if you wanted to get

sixteen lightbulbs worth then we’re

talking about these eight hexagons down

at the bottom right the total area of

those hexagons is to Greater London’s

worth of someone else’s Sahara and

you’ll need power lines all the way

across Spain and France to being to

bring the power from the Sahara to sorry

we need a plan that adds up we need to

stop shouting and start talking and if

we can have a grown-up conversation make

a plan that adds up and get building

maybe this low-carbon revolution will

actually be fun thank you very much for

listening

当工业革命开始时,

英国以煤炭形式存在

的碳量与沙特阿拉伯以石油形式存在的碳量一样大,

而这种

碳为工业革命提供了动力,

它将伟大的英国置于英国并

引领 到英国暂时

统治世界,然后在 1918

年英国的煤炭产量达到顶峰,此后

一直下降,

此后英国开始使用

北海的石油和天然气,2000 年北海的

石油和天然气产量

也达到顶峰,他们

现在正在下降 这些

关于

易于获得的当地安全化石

燃料的有限性的观察 这是一个动机,可以

很好地说明下一步是什么

化石燃料之后的生活会是什么样子

我们不应该认真思考如何下车

化石燃料的另一个动机

当然是气候变化,当人们

谈论化石燃料和气候变化行动之后的生活时,

我认为有

很多 绒毛 很多绿色 洗掉

很多误导性广告 我觉得

作为一名物理学家有责任尝试引导

人们绕过哗众取宠并帮助

人们理解

真正产生影响的行动并专注于

确实加起来的想法让我

用物理学家所说的信封计算的回溯来说明这一点

我们喜欢信封计算的回溯

你问一个问题

你写下一些数字然后你得到

一个答案它可能不是很

准确但它可能会让你说嗯所以

这里有一个问题想象一下 我们说哦,

是的,我们可以摆脱化石燃料 我们将

使用生物燃料 解决交通问题

我们不再需要石油

了,如果我们在

路边的草地边缘

为道路种植生物燃料会怎么样 边缘

必须是为了解决这个问题,所以让我们

输入一些数字让我们

的汽车以每小时 60 英里的速度行驶假设他们

每加仑行驶 30 英里,这是欧洲

新车的平均水平假设

生物燃料计划的生产力 tations 是

每年每公顷 1200 升生物燃料,这

对于欧洲生物燃料来说是真实的,让我们

想象汽车彼此相距 80 米

,它们只是

永远沿着这条道路行驶,道路的长度

并不重要,因为越长

道路越多,我们拥有的生物燃料种植园越多

,我们如何处理这些

数字,你取第一个数字,

然后除以其他三个,

你得到 8 公里,这就是

种植园

必须有多大的答案 假设

,也许这会让你说,嗯,也许

这不会那么容易

,它可能会让你认为也许是

一个与地区有关的问题,在这次

谈话中,我想谈谈土地面积

并问有没有 关于领域

的问题 答案是肯定的,但这

取决于您在哪个国家/地区,所以

让我们从英国开始,因为

这就是我们今天所处的位置

英国的

能源消耗量 总能源消耗量 不仅是

交通运输,还有我喜欢用

灯泡来量化它的

一切,就好像我们一直都有 125 个灯泡

开着 每人每天 125 千瓦时

是英国的能源消耗量,

所以有 40 个灯泡值得

运输 40 个用于

取暖的灯泡和 40 个

用于发电的灯泡和其他东西

与这三条大鱼相比,

它实际上具有更大的

足迹 如果我们考虑到

体现的能源和我们进口

到我国的东西 嗯,

今天 90% 的能源仍然

来自化石燃料,10% 仅

来自其他更环保的可能 goona

能源,如核能和

可再生能源,所以这就是英国,英国的

人口密度是

每平方公里 250 人,而我现在

在垂直轴上通过这两个相同的衡量标准向您展示其他国家

我将向您展示

我们每人的能源消耗有多少灯泡

我们 ‘每人有 125 个

灯泡,那里的小

蓝点显示英国的陆地

空气

年,

人口密度在

横轴上,我们是每平方公里 250 人,

让我们添加蓝色的欧洲

国家和你 可以看到有很

多种我应该强调这两个

轴都是对数的,因为您从一个

灰色条到下一个大条,您

将上升 10 倍接下来让我们

在红色中添加亚洲,中东,北非

,绿色子- 撒哈拉非洲蓝

黑色是南美洲

紫色是中美洲然后是

pukey黄色我们有北美

澳大利亚和新西兰你可以

看到人口

密度和人均消费的巨大差异

国家彼此不同

左上角我们有 加拿大和澳大利亚

拥有巨大的土地面积

人均消费量非常高 每人 200 或 300 个

灯泡,人口密度非常低

右上角 巴林拥有相同的

能源 c 人均消费量大致相当于

加拿大 每人超过 300 个灯泡,

但其人口密度是

每平方公里千人的三百倍

右下 孟加拉国的

人口密度与巴林相同,但

人均消费量少一百倍

左下 好吧,没有人,

但曾经有一大堆人

这是这张图表中的另一条信息

我在苏丹 利比亚 中国 印度 孟加拉国后面的蓝色小尾巴上添加

了 15 年的进步

15 年前他们在哪里,现在他们在哪里

并且信息是大多数国家

正在向右,他们正在

向上,向右更大的人口

密度和更高的人均

消费,所以我们可能会在

右上角有点不

寻常英国和德国

日本 韩国、荷兰和

其他一些稍微奇怪的国家,

但许多其他国家正在出现,

并且有权来和 加入我们,

如果您喜欢其他国家

未来的能源消耗情况,我们就是一张照片

——

我现在还在此图中添加了一些

向下和向右的粉红色线,它们是

相等的线

我以每平方米瓦特为单位测量的单位面积能耗

,例如中间

线每平方米 0.1 瓦是

15 年前沙特阿拉伯挪威墨西哥和孟加拉国的单位面积能耗,以及

世界人口的一半 生活在

已经高于该线的国家

英国每平方米消耗 1.25 瓦

表明德国和日本

的消耗更多

所以现在让我们说一下为什么这很重要

为什么它很重要我们可以

用相同的单位测量可再生能源和

同一单位的其他形式的电力生产

和可再生能源是

我们如何

摆脱 90% 化石燃料习惯的主要想法之一,因此这里

来自可再生能源作物 er

harper 每平方米在欧洲

气候中的瓦特这是什么意思,

鉴于我刚才告诉你的关于生物燃料

种植园的内容,你可能已经预料到了这个结果,

我们每平方米消耗 1.25 瓦,

这意味着即使你

覆盖了 整个英国

的能源作物都无法与

今天的能源消耗相媲美 风力发电

每平方米产生更多的 2.5 瓦,

但这只是每平方米 1.25 的两倍,

所以这意味着如果

你想从字面上产生一个总

平均来自风电场的各种形式的能源消耗 你需要

英国一半面积的风电场 我有

数据支持所有这些

断言 顺便说一下,让我们看看

太阳能电池板,当你安装

它们时 在英格兰,屋顶每平方米可提供约 20 瓦的

电量,如果您

真的想从太阳能

电池板中获得很多收益,则需要采用

传统的巴伐利亚农业方法

,即从屋顶上跳下来

用太阳能电池板覆盖农村到太阳能

公园,因为面板之间的差距

减少了它们

每平方米土地面积提供约 5 瓦特

,这是佛蒙特州的一个太阳能公园,

真实数据

每平方米提供 4.2 瓦特记住我们

在哪里 每平方米 1.25 瓦的风

电场 2.5 个太阳能公园 大约 5 个因此

无论

您选择哪种可再生能源,无论

您使用哪种可再生能源,如果您

想为英国供电,您

将需要覆盖一些东西 像

全国 20% 或 25% 的国家

拥有这些可再生能源,我并不是说

这是一个坏主意,我们只需要

了解这些数字我绝对

不是 Antti 可再生能源我喜欢可再生能源,

但我也是专业的算术,

将太阳能集中在 沙漠

每单位面积提供更大的功率,

因为你没有云的问题

,所以这个设施

每平方米提供 14 瓦特,

每平方米 110 瓦特,这样

就可以了 e 在西班牙,每平方米 5 瓦特

对集中太阳能很慷慨

我认为它可以提供每平方米 20 瓦特的电力可能是可信的,

所以这很好,当然英国

还没有任何沙漠,所以这里是

迄今为止所有可再生能源的总结 因为我

喜欢它们是分散的,它们

每单位面积的功率都很小,我们必须

接受这个事实,这意味着如果

你确实希望可再生能源

在今天的消费规模上对英国这样的国家产生重大影响,

你 需要

想象可再生能源设施的

规模不是整个国家而是

该国的一小部分人表示

还有其他

发电选择

不涉及化石燃料因此

有核电在这张

军械调查地图上 你可以看到

在一个蓝色的平方公里内有一个井,它是每

平方公里一吉瓦,相当于每平方米一千瓦

因此,通过这个特定的指标,

核电并不像可再生能源那样具有侵入

性,当然其他指标对

核电很重要有各种

受欢迎的问题,但

可再生能源也是如此,这是一张全面展开

的咨询活动的照片

就在爱丁堡郊外的南边的彭尼库克小镇,你可以看到

佩纳库克的孩子们在庆祝

燃烧风的肖像,

所以人们反对一切,我们

必须把所有的选择都摆在桌面上

,一个国家会喜欢什么 英国在

供应方面做得很好,选项是我会说

这三个是可再生能源,并

认识到它们需要

接近国家规模的其他人的

可再生能源,所以我们可以回去和

左上角的人非常有礼貌地交谈-

图表的另一边说我们

不希望在我们的后院使用可再生能源,

但是请我们把你的可以

代替,这是一个严肃的选择,它

是世界处理这个问题的一种方式,

所以 像澳大利亚 俄罗斯

利比亚 哈萨克斯坦这样的国家可能是我们

可再生能源生产最好的朋友,

第三种选择是核电,所以

除了供应杠杆之外,还有一些供应方的选择,我们

可以推动并记住我们需要

大量的能源,因为目前我们 除了那些我们可以讨论解决这个问题的其他方法的杠杆之外

,我们 90% 的能源将从化石

燃料中获得,

即我们可以利用需求

,这

意味着减少人口 所以

让我们谈谈另外三个

可以真正帮助

消费方面的大杠杆 首先运输 这里

是告诉你

如何减少运输能源消耗的物理原理

,人们经常说哦,是的,

技术可以解决我们

制造车辆的一切问题

效率提高了一百倍,这几乎是真的

让我给你看

这个典型坦克的能源消耗是 80

千瓦时 p 一百人公里

那是欧洲汽车的平均 80

千瓦时 我们可以

通过应用

我刚刚列出的那些物理原理使东西好一百倍 是的

这里是自行车 它

的能源消耗要好 80 倍 它

由 Weetabix 提供的生物燃料提供动力

并且还有其他选择,

因为也许坦克里的女士会

说不,不,这是一种生活方式的改变,

请不要改变我的生活方式,

我们可以说服她上

火车,这仍然

比汽车更有效率 但这可能是

生活方式的改变,或者生态汽车的

顶部可以舒适地容纳一个

青少年,它比交通

锥还短

,只要你以每小时 15 英里的速度驾驶它,它几乎和自行车一样高效

,也许更

现实 这个杠杆

运输杠杆的选项是电动汽车,所以

中间的电动自行车和电动汽车可能

是标准能源效率的四倍 汽油动力

油箱下一个是加热杆加热

是我们在英国能源消耗的三分之一,其中

相当多的能源

用于家庭和高层建筑,用于

空间供暖和水加热,所以

这是一个典型的蹩脚英国房子,

这是我和法拉利的房子 前面

我们能做些什么

好那里写着物理定律,

描述了加热的功耗是如何

你可以控制的东西驱动的 你可以控制

内部和之间的温差

外面有一项非凡的

技术,叫做恒温器,你

抓住它,把它向左旋转,

你家里的能源消耗

就会减少 为了减少

建筑物的泄漏,

在墙壁上放绒毛,在屋顶上放绒毛和新的

前门等等,可悲的

事实是,这将为您节省金钱 这

并不难过,但可悲的事实是

如果你

真的想

用一个破房子更接近瑞典的建筑标准,那么如果你做这些好主意,它只会让你的建筑物的泄漏减少大约 25%

像这样,您需要

在建筑物上放置外部绝缘,如

伦敦的这块植物所示,

您还可以

使用热泵更有效地输送热量,该热泵使用

少量的高级能源(如

电力)将热量从您的

花园转移到 你的房子 第三个需求

方选项 我想谈谈

降低能源消耗的第三种方法

是读取年轻的电表,人们经常

谈论智能电表,但你可以

自己用自己的眼睛,聪明地

读你的电表,如果你

像我一样,它会改变你的生活 这是

我制作的图表 我正在写一本关于

可持续能源的书,一位朋友问

我你在家中使用了多少能源

,我很尴尬我实际上并没有

现在,所以我开始每周读表

,旧的表

读数显示在图表的上半部分

,然后 2007 年在底部显示为绿色

,那是我

每周读表的时候,我的生活发生了变化,

因为 我开始做实验

,看看有什么不同,我的

燃气消耗量直线下降,因为我

开始修改恒温器

和供暖系统的时间,

我的燃气费减少了一半以上,

我的用电量也有类似的故事

关闭 DVD 播放器 立体声 一直打开的

计算机外围设备,

并在我需要它们的时候打开它们

又减少了

我的电费的三分之一

  • 所以我们需要一个加起来的计划,

我已经为你描述了六个 大杠杆

,我们需要大行动,因为我们

90% 的能源来自化石燃料,

所以如果不是全部,你需要大力推动大多数

杠杆,而且这些杠杆中的大多数

都很受欢迎 问题,如果

有一个你不喜欢

使用的杠杆,请记住,这

意味着你需要在其他杠杆上付出更大的努力,

所以我强烈

主张进行基于成人的

对话 关于数字

和事实,我想以这张

地图结束,它只是为您可视

化土地等方面的需求,

以便

从四个可能的大

来源中每人仅获得 16 个灯杆,所以如果您想获得 16 个

灯杆 记住今天我们的总

能源消耗是 125 个

灯泡,如果你想要 16 个来自风能

这张地图可视化了英国的解决方案,

它有 160 个风力发电场,每座

100 平方公里,

这将是

今天风力发电量的 20 倍 核电

每人获得 16 个灯泡 你需要

2 吉瓦在

地图上的每个紫色点上,这

比今天的核电

生物质水平增加了四倍才能获得每人 16 个灯泡

你 n

在我们国家或

其他国家/地区可能需要一个像三头半鲸鱼这样的土地,可能是爱尔兰,

可能是其他地方

,如果您想获得十六个灯泡,那么第四个供应方选择

将太阳能集中在其他

人的沙漠中

我们正在

谈论

右下角的这八个六边形,

这些六边形的总面积相当于大伦敦

的其他人的撒哈拉沙漠,

你需要一路

跨越西班牙和法国的电力线才能

将电力从 撒哈拉抱歉,

我们需要一个加起来的计划,我们需要

停止大喊大叫,开始说话,如果

我们可以进行成人对话,制定

一个加起来并开始建设的计划,

也许这场低碳革命

实际上会很有趣,非常感谢 很适合