David Mackay A reality check on renewables

Translator: Joseph Geni
Reviewer: Morton Bast

When the Industrial Revolution started,

the amount of carbon sitting
underneath Britain in the form of coal

was as big as the amount of carbon
sitting under Saudi Arabia

in the form of oil.

This carbon powered
the Industrial Revolution,

it put the “Great” in Great Britain,

and led to Britain’s temporary
world domination.

And then, in 1918,
coal production in Britain peaked,

and has declined ever since.

In due course, Britain started using
oil and gas from the North Sea,

and in the year 2000,

oil and gas production
from the North Sea also peaked,

and they’re now on the decline.

These observations about the finiteness

of easily accessible, local,
secure fossil fuels,

is a motivation for saying,
“Well, what’s next?

What is life after fossil fuels
going to be like?

Shouldn’t we be thinking hard
about how to get off fossil fuels?”

Another motivation,
of course, is climate change.

And when people talk
about life after fossil fuels

and climate change action,

I think there’s a lot of fluff,

a lot of greenwash,
a lot of misleading advertising,

and I feel a duty as a physicist to try
to guide people around the claptrap

and help people understand the actions
that really make a difference,

and to focus on ideas that do add up.

Let me illustrate this

with what physicists call
a back-of-envelope calculation.

We love back-of-envelope calculations.

You ask a question,
write down some numbers,

and get an answer.

It may not be very accurate,
but it may make you say, “Hmm.”

So here’s a question:

Imagine if we said, “Oh yes,
we can get off fossil fuels.

We’ll use biofuels. Problem solved.

Transport … We don’t need oil anymore.”

Well, what if we grew
the biofuels for a road

on the grass verge
at the edge of the road?

How wide would the verge
have to be for that to work out?

OK, so let’s put in some numbers.

Let’s have our cars go
at 60 miles per hour.

Let’s say they do 30 miles per gallon.

That’s the European average for new cars.

Let’s say the productivity
of biofuel plantations

is 1,200 liters of biofuel
per hectare per year.

That’s true of European biofuels.

And let’s imagine the cars are spaced
80 meters apart from each other,

and they’re perpetually
going along this road.

The length of the road doesn’t matter,

because the longer the road,
the more biofuel plantation.

What do we do with these numbers?

Take the first number, divide by the other
three, and get eight kilometers.

And that’s the answer.

That’s how wide the plantation
would have to be,

given these assumptions.

And maybe that makes you say, “Hmm.

Maybe this isn’t going
to be quite so easy.”

And it might make you think,

perhaps there’s an issue to do with areas.

And in this talk, I’d like to talk
about land areas, and ask:

Is there an issue about areas?

The answer is going to be yes,
but it depends which country you are in.

So let’s start in the United Kingdom,

since that’s where we are today.

The energy consumption
of the United Kingdom,

the total energy consumption –
not just transport, but everything –

I like to quantify it in lightbulbs.

It’s as if we’ve all got
125 lightbulbs on all the time,

125 kilowatt-hours per day per person

is the energy consumption of the UK.

So there’s 40 lightbulbs'
worth for transport,

40 lightbulbs' worth for heating,

and 40 lightbulbs' worth
for making electricity,

and other things are relatively small,

compared to those three big fish.

It’s actually a bigger footprint
if we take into account

the embodied energy in the stuff
we import into our country as well.

And 90 percent of this energy, today,
still comes from fossil fuels,

and 10 percent, only, from other,
greener – possibly greener – sources,

like nuclear power and renewables.

So.

That’s the UK.

The population density of the UK
is 250 people per square kilometer.

I’m now going to show you other countries
by these same two measures.

On the vertical axis, I’m going
to show you how many lightbulbs –

what our energy consumption per person is.

We’re at 125 lightbulbs per person,

and that little blue dot there
is showing you the land area

of the United Kingdom.

The population density
is on the horizontal axis,

and we’re 250 people per square kilometer.

Let’s add European countries in blue,

and you can see there’s quite a variety.

I should emphasize,
both of these axes are logarithmic;

as you go from one gray bar
to the next gray bar,

you’re going up a factor of 10.

Next, let’s add Asia in red,

the Middle East and North Africa in green,

sub-Saharan Africa in blue,

black is South America,

purple is Central America,

and then in pukey-yellow,
we have North America,

Australia and New Zealand.

You can see the great diversity
of population densities

and of per capita consumptions.

Countries are different from each other.

Top left, we have Canada and Australia,
with enormous land areas,

very high per capita consumption –
200 or 300 lightbulbs per person –

and very low population densities.

Top right: Bahrain has
the same energy consumption

per person, roughly, as Canada –

over 300 lightbulbs per person,

but their population density
is a factor of 300 times greater,

1,000 people per square kilometer.

Bottom right: Bangladesh has
the same population density as Bahrain,

but consumes 100 times less per person.

Bottom left: well, there’s no one.

But there used to be
a whole load of people.

Here’s another message from this diagram.

I’ve added on little blue tails
behind Sudan, Libya,

China, India, Bangladesh.

That’s 15 years of progress.

Where were they 15 years ago,
and where are they now?

And the message is,

most countries are going to the right,
and they’re going up.

Up and to the right:
bigger population density

and higher per capita consumption.

So, we may be off in the top
right-hand corner, slightly unusual,

the United Kingdom accompanied by Germany,

Japan, South Korea, the Netherlands,

and a bunch of other
slightly odd countries,

but many other countries are coming
up and to the right to join us.

So we’re a picture, if you like,

of what the future energy consumption

might be looking
like in other countries, too.

I’ve also added in this diagram
now some pink lines

that go down and to the right.

Those are lines of equal
power consumption per unit area,

which I measure in watts per square meter.

So, for example, the middle line there,
0.1 watts per square meter,

is the energy consumption
per unit area of Saudi Arabia,

Norway, Mexico in purple,
and Bangladesh 15 years ago.

Half of the world’s population
lives in countries

that are already above that line.

The United Kingdom is consuming
1.25 watts per square meter.

So is Germany, and Japan
is consuming a bit more.

So, let’s now say why this is relevant.

Why is it relevant?

Well, we can measure
renewables in the same units

and other forms of power
production in the same units.

Renewables is one of the leading ideas

for how we could get off
our 90 percent fossil-fuel habit.

So here come some renewables.

Energy crops deliver
half a watt per square meter

in European climates.

What does that mean?

You might have anticipated that result,

given what I told you about the biofuel
plantation a moment ago.

Well, we consume 1.25 watts
per square meter.

What this means is,

even if you covered the whole
of the United Kingdom with energy crops,

you couldn’t match
today’s energy consumption.

Wind power produces a bit more –
2.5 watts per square meter.

But that’s only twice as big
as 1.25 watts per square meter.

So that means if you wanted, literally,
to produce total energy consumption

in all forms, on average, from wind farms,

you need wind farms
half the area of the UK.

I’ve got data to back up
all these assertions, by the way.

Next, let’s look at solar power.

Solar panels, when you put them on a roof,

deliver about 20 watts
per square meter in England.

If you really want to get
a lot from solar panels,

you need to adopt the traditional
Bavarian farming method,

where you leap off the roof,

and coat the countryside
with solar panels, too.

Solar parks, because of the gaps
between the panels, deliver less.

They deliver about 5 watts
per square meter of land area.

And here’s a solar park
in Vermont, with real data,

delivering 4.2 watts per square meter.

Remember where we are,
1.25 watts per square meter,

wind farms 2.5, solar parks about five.

So whichever of those renewables you pick,

the message is, whatever mix
of those renewables you’re using,

if you want to power the UK on them,

you’re going to need
to cover something like

20 percent or 25 percent of the country

with those renewables.

I’m not saying that’s a bad idea;
we just need to understand the numbers.

I’m absolutely not anti-renewables.
I love renewables.

But I’m also pro-arithmetic.

(Laughter)

Concentrating solar power in deserts
delivers larger powers per unit area,

because you don’t have
the problem of clouds.

So, this facility delivers
14 watts per square meter;

this one 10 watts per square meter;

and this one in Spain,
5 watts per square meter.

Being generous
to concentrating solar power,

I think it’s perfectly credible it could
deliver 20 watts per square meter.

So that’s nice.

Of course, Britain
doesn’t have any deserts.

Yet.

(Laughter)

So here’s a summary so far:

All renewables, much
as I love them, are diffuse.

They all have a small power per unit area,

and we have to live with that fact.

And that means, if you do want renewables
to make a substantial difference

for a country like the United Kingdom

on the scale of today’s consumption,

you need to be imagining renewable
facilities that are country-sized.

Not the entire country,

but a fraction of the country,
a substantial fraction.

There are other options
for generating power as well,

which don’t involve fossil fuels.

So there’s nuclear power,
and on this ordinance survey map,

you can see there’s a Sizewell B
inside a blue square kilometer.

That’s one gigawatt in a square kilometer,

which works out to 1,000 watts
per square meter.

So by this particular metric,

nuclear power isn’t
as intrusive as renewables.

Of course, other metrics matter, too,

and nuclear power has
all sorts of popularity problems.

But the same goes for renewables as well.

Here’s a photograph of a consultation
exercise in full swing

in the little town of Penicuik
just outside Edinburgh,

and you can see the children
of Penicuik celebrating

the burning of the effigy of the windmill.

So –

(Laughter)

People are anti-everything,

and we’ve got to keep
all the options on the table.

What can a country like the UK
do on the supply side?

Well, the options are,
I’d say, these three:

power renewables,

and recognizing that they need
to be close to country-sized;

other people’s renewables,

so we could go back and talk very politely

to the people in the top left-hand side
of the diagram and say,

“Uh, we don’t want
renewables in our backyard,

but, um, please could we put
them in yours instead?”

And that’s a serious option.

It’s a way for the world
to handle this issue.

So countries like Australia,
Russia, Libya, Kazakhstan,

could be our best friends
for renewable production.

And a third option is nuclear power.

So that’s some supply-side options.

In addition to the supply levers
that we can push –

and remember, we need large amounts,

because at the moment, we get 90 percent
of our energy from fossil fuels –

in addition to those levers,

we could talk about other ways
of solving this issue.

Namely, we could reduce demand,
and that means reducing population –

I’m not sure how to do that –

or reducing per capita consumption.

So let’s talk about three more big levers

that could really help
on the consumption side.

First, transport.

Here are the physics principles

that tell you how to reduce
the energy consumption of transport.

People often say,
“Technology can answer everything.

We can make vehicles
that are 100 times more efficient.”

And that’s almost true. Let me show you.

The energy consumption
of this typical tank here

is 80 kilowatt hours
per hundred person kilometers.

That’s the average European car.

Eighty kilowatt hours.

Can we make something 100 times better

by applying the physics
principles I just listed?

Yes. Here it is. It’s the bicycle.

It’s 80 times better
in energy consumption,

and it’s powered by biofuel, by Weetabix.

(Laughter)

And there are other options in between,

because maybe the lady
in the tank would say,

“No, that’s a lifestyle change.
Don’t change my lifestyle, please.”

We could persuade her to take a train,
still a lot more efficient than a car,

but that might be a lifestyle change.

Or there’s the EcoCAR, top-left.

It comfortably accommodates one teenager
and it’s shorter than a traffic cone,

and it’s almost as efficient as a bicycle,

as long as you drive it
at 15 miles per hour.

In between, perhaps
some more realistic options

on the transport lever
are electric vehicles,

so electric bikes
and electric cars in the middle,

perhaps four times as energy efficient
as the standard petrol-powered tank.

Next, there’s the heating lever.

Heating is a third of our energy
consumption in Britain,

and quite a lot of that
is going into homes

and other buildings,

doing space heating and water heating.

So here’s a typical crappy British house.

It’s my house, with a Ferrari out front.

(Laughter)

What can we do to it?

Well, the laws of physics
are written up there,

which describe how the power
consumption for heating

is driven by the things you can control.

The things you can control
are the temperature difference

between the inside and the outside.

There’s this remarkable technology
called a thermostat:

you grasp it, rotate it to the left,

and your energy consumption
in the home will decrease.

I’ve tried it. It works.
Some people call it a lifestyle change.

(Laughter)

You can also get the fluff men
in to reduce the leakiness

of your building – put fluff
in the walls, fluff in the roof,

a new front door, and so forth.

The sad truth is,
this will save you money.

That’s not sad, that’s good.

But the sad truth is,

it’ll only get about 25 percent
of the leakiness of your building

if you do these things,
which are good ideas.

If you really want to get a bit closer
to Swedish building standards

with a crappy house like this,

you need to be putting
external insulation on the building,

as shown by this block of flats in London.

You can also deliver heat
more efficiently using heat pumps,

which use a smaller bit
of high-grade energy like electricity

to move heat from your garden
into your house.

The third demand-side option
I want to talk about,

the third way to reduce energy
consumption is: read your meters.

People talk a lot about smart meters,

but you can do it yourself.

Use your own eyes and be smart.

Read your meter, and if you’re anything
like me, it’ll change your life.

Here’s a graph I made.

I was writing a book
about sustainable energy,

and a friend asked me,

“How much energy do you use at home?”

I was embarrassed; I didn’t actually know.

And so I started reading
the meter every week.

The old meter readings are shown
in the top half of the graph,

and then 2007 is shown
in green at the bottom.

That was when I was reading
the meter every week.

And my life changed,

because I started doing experiments
and seeing what made a difference.

My gas consumption plummeted,

because I started tinkering
with the thermostat

and the timing on the heating system,

and I knocked more than half
off my gas bills.

There’s a similar story
for my electricity consumption,

where switching off the DVD
players, the stereos,

the computer peripherals
that were on all the time,

and just switching them on
when I needed them,

knocked another third
off my electricity bills, too.

So we need a plan that adds up.

I’ve described for you six big levers.

We need big action,

because we get 90 percent
of our energy from fossil fuels,

and so you need to push hard
on most, if not all, of these levers.

Most of these levers
have popularity problems,

and if there is a lever
you don’t like the use of,

well, please do bear in mind
that means you need even stronger effort

on the other levers.

So I’m a strong advocate
of having grown-up conversations

that are based on numbers and facts.

And I want to close with this map
that just visualizes for you

the requirement of land and so forth

in order to get just
16 lightbulbs per person

from four of the big possible sources.

So, if you wanted to get 16 lightbulbs –

remember, today our total energy
consumption is 125 lightbulbs' worth –

if you wanted 16 from wind,

this map visualizes a solution for the UK.

It’s got 160 wind farms,
each 100 square kilometers in size,

and that would be a twentyfold increase
over today’s amount of wind.

Nuclear power:
to get 16 lightbulbs per person,

you’d need two gigawatts
at each of the purple dots on the map.

That’s a fourfold increase
over today’s levels of nuclear power.

Biomass: to get 16 lightbulbs per person,

you’d need a land area something
like three and a half Wales' worth,

either in our country,
or in someone else’s country,

possibly Ireland, possibly somewhere else.

(Laughter)

And a fourth supply-side option:

concentrating solar power
in other people’s deserts.

If you wanted to get 16 lightbulbs' worth,

then we’re talking
about these eight hexagons

down at the bottom right.

The total area of those hexagons
is two Greater London’s worth

of someone else’s Sahara,

and you’ll need power lines
all the way across Spain and France

to bring the power
from the Sahara to Surrey.

(Laughter)

We need a plan that adds up.

We need to stop shouting
and start talking.

And if we can have
a grown-up conversation,

make a plan that adds up and get building,

maybe this low-carbon revolution
will actually be fun.

Thank you very much for listening.

(Applause)

译者:Joseph Geni
审稿人:Morton

Bast 工业革命开始时,

英国以煤炭形式存在

的碳量与
沙特阿拉伯

以石油形式存在的碳量一样大。

这种碳
为工业革命提供了动力

,将“伟大”置于英国,

并导致英国暂时
统治世界。

然后,在 1918 年,
英国的煤炭产量达到顶峰,

此后一直下降。

在适当的时候,英国开始使用
北海的石油和天然气,2000年北海的

石油和天然气产量
也达到了顶峰

,现在正在下降。

这些关于

易于获取、本地、
安全的化石燃料的有限性的观察,

是一种动机,可以说:
“好吧,下一步

是什么?化石燃料之后的生活
会是什么样子?

我们不应该认真
思考如何下车吗? 化石燃料?” 当然

,另一个动机
是气候变化。

当人们
谈论化石燃料

和气候变化行动之后的生活时,

我认为有很多绒毛

,很多绿化
,很多误导性广告

,我觉得作为一名物理学家有责任
引导人们绕过哗众取宠

和 帮助人们了解
真正产生影响的行动,

并专注于确实加起来的想法。

让我

用物理学家
所谓的封底计算来说明这一点。

我们喜欢粗略计算。

你问一个问题,
写下一些数字,

然后得到答案。

它可能不是很准确,
但它可能会让你说,“嗯”。

所以这里有一个问题:

想象一下,如果我们说,“哦,是的,
我们可以摆脱化石燃料。

我们将使用生物燃料。问题解决了。

运输……我们不再需要石油了。”

好吧,如果我们在
路边的草地上为道路种植生物燃料会

怎样?

要解决这个问题,边缘必须有多宽

好的,让我们输入一些数字。

让我们的汽车
以每小时 60 英里的速度行驶。

假设他们每加仑行驶 30 英里。

这是欧洲新车的平均水平。

假设
生物燃料种植园的生产力

是每年每公顷 1,200 升生物燃料

欧洲的生物燃料就是如此。

让我们想象一下,这些汽车
彼此相距 80 米

,它们
永远沿着这条路行驶。

道路的长度并不重要,

因为道路越长,
生物燃料种植园就越多。

我们如何处理这些数字?

取第一个数字,除以其他
三个,得到八公里。

这就是答案。 考虑到这些假设,

这就是种植园的宽度

也许这会让你说,“嗯。

也许这
不会那么容易。”

它可能会让你思考,

也许存在与区域有关的问题。

在这个演讲中,我想
谈谈土地面积,并问:

有没有关于面积的问题?

答案是肯定的,
但这取决于你在哪个国家。

所以让我们从英国开始,

因为这就是我们今天所处的位置。

英国

的能源消耗量,总能源消耗量——
不仅仅是交通,而是一切——

我喜欢用灯泡来量化它。

就好像我们一直有
125 个灯泡,

每人每天 125 千瓦时

是英国的能源消耗量。

所以
运输用的

灯泡40个,取暖用

的40个
,发电用的40个

,其他的东西,

跟那三条大鱼比起来,都比较小。

如果我们考虑到我们进口到我们国家

的东西中的隐含能量,这实际上是一个更大的足迹

今天,这种能源的 90%
仍然来自化石燃料

,只有 10% 来自其他
更环保(可能更环保)的能源,

如核能和可再生能源。

所以。

那是英国。

英国的人口密度为
每平方公里250人。

我现在将
通过这两个相同的措施向您展示其他国家。

在垂直轴上,我
将向您展示有多少个灯泡——

我们每人的能源消耗是多少。

我们每人有 125 个灯泡,

那里的那个小蓝点
向您展示

了英国的土地面积。

人口
密度在横轴上

,我们是每平方公里250人。

让我们以蓝色添加欧洲国家

,您会看到种类繁多。

我应该强调,
这两个轴都是对数的;

当你从一个灰色条
到下一个灰色条时,

你会上升 10 倍。

接下来,让我们添加红色的亚洲,绿色

的中东和

北非,蓝色的撒哈拉以南非洲,

黑色是南部 美洲,

紫色是中美洲,

然后是淡黄色,
我们有北美、

澳大利亚和新西兰。

你可以看到
人口密度

和人均消费的巨大差异。

国家彼此不同。

左上角是加拿大和澳大利亚,它们
拥有广阔的土地面积、

非常高的人均消费量——
每人 200 或 300 个灯泡——

以及非常低的人口密度。

右上:巴林
的人均能源消耗量

与加拿大大致相同——

每人 300 多个灯泡,

但其人口密度

每平方公里 1,000 人的 300 倍。

右下:孟加拉国
的人口密度与巴林相同,

但人均消费量少 100 倍。

左下:嗯,没有人。

但过去
有一大堆人。

这是该图中的另一条消息。


在苏丹、利比亚、

中国、印度、孟加拉国后面加上了蓝色的小尾巴。

这是15年的进步。

15 年前他们在哪里,
现在又在哪里?

所传达的信息是,

大多数国家都在往右走,
而且他们正在往上走。

向上和向右:
更大的人口密度

和更高的人均消费。

所以,我们可能在
右上角,有点不寻常

,英国伴随着德国、

日本、韩国、荷兰

和其他
一些有点奇怪的国家,

但许多其他国家正在
出现并 加入我们的权利。

因此,如果您愿意,我们也可以了解其他国家

未来的能源消耗

情况

我现在还在此图中添加了

一些向下和向右的粉红色线条。

这些是
每单位面积的功耗相等的线

,我以每平方米瓦特为单位测量。

因此,例如,那里的中间线,
每平方米 0.1 瓦,

是 15 年前
沙特阿拉伯、

挪威、墨西哥
和孟加拉国的单位面积能耗。

世界上一半的人口
生活在

已经超过这条线的国家。

英国
每平方米消耗 1.25 瓦。

德国也是如此,日本
的消费量要多一些。

所以,现在让我们说一下为什么这是相关的。

为什么相关?

好吧,我们可以测量
相同单位的可再生能源和相同单位

的其他形式的电力
生产。

可再生能源是

我们如何
摆脱 90% 的化石燃料习惯的主要理念之一。

所以这里来了一些可再生能源。 在欧洲气候条件下,

能源作物
每平方米可提供 0.5 瓦

这意味着什么?

考虑到我刚才告诉你的生物燃料
种植园,你可能已经预料到了这个结果。

好吧,我们每平方米消耗 1.25 瓦

这意味着,

即使你
用能源作物覆盖了整个英国,

你也无法匹配
今天的能源消耗。

风力发电多一点——
每平方米2.5瓦。

但这只是
每平方米 1.25 瓦的两倍。

因此,这意味着,如果您想从字面上

平均从风电场产生各种形式的总能源消耗,

您需要
英国一半面积的风电场。

顺便说一句,我有数据支持所有这些断言。

接下来,让我们看看太阳能。

太阳能电池板,当你把它们放在屋顶上时,在英格兰每平方米

提供大约 20 瓦的功率

如果你真的想
从太阳能电池板中收获很多,

你需要采用传统的
巴伐利亚农业方法

,你从屋顶上跳下来,

在乡村也
涂上太阳能电池板。

太阳能公园,由于
面板之间的差距,提供较少。

它们每平方米土地面积提供约 5 瓦的电力

这是佛蒙特州的一个太阳能公园
,有真实数据,

每平方米提供 4.2 瓦。

记住我们在哪里,
每平方米 1.25 瓦,

风电场 2.5,太阳能公园大约五个。

因此,无论您选择哪种可再生能源

,信息是,无论
您使用哪种可再生能源组合,

如果您想用它们为英国供电,

您将
需要覆盖

该国 20% 或 25% 的面积

与那些可再生能源。

我并不是说这是一个坏主意。
我们只需要了解这些数字。

我绝对不是反可再生能源。
我喜欢可再生能源。

但我也支持算术。

(笑声) 将

太阳能集中在沙漠中
,单位面积的发电量更大,

因为没有
云的问题。

因此,该设施
每平方米提供 14 瓦;

这个每平方米10瓦;

而这个在西班牙,
每平方米5瓦。

慷慨
地集中太阳能,

我认为它可以
提供每平方米 20 瓦的电力是完全可信的。

所以这很好。

当然,英国
没有沙漠。

然而。

(笑声)

所以这里有一个总结:

所有可再生能源,
尽管我很喜欢它们,但都是分散的。

它们每单位面积的功率都很小

,我们必须接受这个事实。

这意味着,如果您确实希望可再生能源

在当今的消费规模上为英国这样的国家带来重大影响,

那么您需要
设想具有国家规模的可再生能源设施。

不是整个国家,

而是国家的一小部分,
相当大的一部分。

还有其他
发电方式

,不涉及化石燃料。

所以有核能
,在这张法令测量图上,

你可以看到
在蓝色平方公里内有一个 Sizewell B。

这是每平方公里一吉瓦

,相当于
每平方米 1,000 瓦。

因此,按照这个特定的衡量标准,

核电
不像可再生能源那样具有侵入性。

当然,其他指标也很重要

,核电存在
各种普及问题。

但可再生能源也是如此。

这是爱丁堡郊外佩尼库克小镇如火如荼的咨询活动的照片

,您可以看到佩尼库克的孩子们
在庆祝

风车雕像的燃烧。

所以——

(笑声)

人们反对一切

,我们必须把
所有的选择都摆在桌面上。

像英国这样的国家
在供应方面能做些什么?

好吧,
我想说的是这三个选项:

电力可再生能源,

并认识到它们
需要接近国家规模;

其他人的可再生能源,

所以我们可以回去非常有礼貌地与图表

左上角的人交谈
并说,

“呃,我们不希望
在我们的后院使用可再生能源,

但是,嗯,我们可以把
取而代之的是你的?”

这是一个严肃的选择。

这是
世界处理这个问题的一种方式。

因此,澳大利亚、
俄罗斯、利比亚、哈萨克斯坦等国家

可能是我们
在可再生能源生产方面最好的朋友。

第三种选择是核能。

所以这是一些供应方的选择。

除了我们可以推动的供应杠杆

——请记住,我们需要大量的能源,

因为目前,我们 90%
的能源来自化石燃料

——除了这些杠杆之外,

我们还可以讨论其他
方式 解决这个问题。

也就是说,我们可以减少需求
,这意味着减少人口——

我不知道该怎么做——

或者减少人均消费。

因此,让我们谈谈另外三个

可以真正
帮助消费方面的大杠杆。

一是运输。

以下

是告诉您如何
减少运输能源消耗的物理原理。

人们常说,
“技术可以解决一切问题,

我们可以制造
出效率提高 100 倍的汽车”。

这几乎是真的。 我来给你展示。

这个典型的坦克在这里的能源消耗

是每百人公里80千瓦时

这就是普通的欧洲汽车。

八十千瓦时。

通过应用
我刚刚列出的物理原理,我们能把事情做得更好 100 倍吗?

是的。 这里是。 是自行车。

它的能源消耗要好 80 倍

,并且由 Weetabix 提供的生物燃料提供动力。

(笑声)

还有其他的选择,

因为也许
坦克里的女士会说,

“不,那是生活方式的改变。
请不要改变我的生活方式。”

我们可以说服她坐火车,
仍然比汽车高效得多,

但这可能是一种生活方式的改变。

或者是左上角的 EcoCAR。

它可以舒适地容纳一个青少年
,它比交通锥还短

只要你
以每小时 15 英里的速度行驶,它几乎和自行车一样高效。

在这两者之间,运输杠杆上的
一些更现实的选择可能

是电动汽车,

所以中间是电动自行车
和电动汽车,其

能源效率
可能是标准汽油动力油箱的四倍。

接下来是加热杆。 在英国,

供暖占我们能源消耗的三分之一

,其中很大
一部分用于家庭

和其他建筑物,

用于空间供暖和水加热。

所以这是一个典型的蹩脚英国房子。

这是我的房子,前面有一辆法拉利。

(笑声)

我们能做些什么呢?

嗯,物理定律
写在那里

,描述
了加热的功耗

是如何由你可以控制的东西驱动的。

您可以控制的事情

内部和外部之间的温差。

有一种非凡的技术
叫做恒温器:

你抓住它,把它向左旋转

,你家中的能源消耗
就会减少。

我试过了。 有用。
有些人称之为生活方式的改变。

(笑声)

你也可以让绒毛
工来减少

建筑物的泄漏——
在墙壁上放绒毛,在屋顶上放绒毛

,新的前门等等。

可悲的事实是,
这将为您节省金钱。

这不是难过,这很好。

但可悲的事实是,如果你做这些事情,

它只会得到大约 25%
的建筑物泄漏


这些都是好主意。

如果你真的想用这样的破房子更
接近瑞典的建筑标准

你需要
在建筑物上安装外部绝缘材料,

如伦敦的这栋公寓楼所示。

您还可以
使用热泵更有效地输送热量,

它使用少量
的高级能源(如电力)

将热量从您的花园
输送到您的房子。 我想谈

的第三个需求侧选项

,第三种降低
能耗的方法是:读你的电表。

人们经常谈论智能电表,

但您可以自己做。

用你自己的眼睛,聪明点。

读你的仪表,如果你
像我一样,它会改变你的生活。

这是我制作的图表。

我正在写一本
关于可持续能源的书

,一位朋友问我,

“你在家使用多少能源?”

我很不好意思; 我其实不知道。

所以我开始
每周读一次电表。

旧的仪表读数显示
在图表的上半部分,

然后 2007 年
以绿色显示在底部。

那是我
每周读电表的时候。

我的生活发生了变化,

因为我开始做实验
,看看有什么改变。

我的燃气消耗量直线下降,

因为我开始
修改恒温器

和供暖系统的时间,

我的燃气费减少了一半以上。

我的用电量也有类似的情况

关闭一直打开的 DVD
播放器、立体声音响

和计算机外围设备
,并在

需要时打开它们,

我的电费也减少了三分之一。

所以我们需要一个加起来的计划。

我已经为你描述了六个大杠杆。

我们需要采取重大行动,

因为我们 90%
的能源来自化石燃料

,因此您需要大力推动
这些杠杆中的大部分(如果不是全部的话)。

这些杠杆中的大多数
都存在受欢迎程度的问题

,如果
您不喜欢使用某个杠杆,

那么请记住
,这意味着您需要

在其他杠杆上付出更大的努力。

因此,我强烈

主张基于数字和事实进行成人对话。

最后,我想用这张地图来结束,它
为你展示

了土地等方面的需求,

以便

从四个可能的大来源中每人只获得 16 个灯泡。

所以,如果你想得到 16 个灯泡——

请记住,今天我们的总
能耗是 125 个灯泡的价值——

如果你想从风中得到 16 个,

这张地图可视化了英国的解决方案。

它有 160 个风力发电场,
每个 100 平方公里的大小

,这将是
今天风力发电量的 20 倍。

核电
:要每人获得 16 个灯泡,

地图上的每个紫色点需要 2 吉瓦。

这是
当今核电水平的四倍。

生物质:要每人获得 16 个灯泡,

你需要一块
相当于三个半威尔士的土地面积,

无论是在我们国家
还是在其他国家,

可能是爱尔兰,也可能是其他地方。

(笑声)

还有第四个供应方选择:

将太阳能集中
在其他人的沙漠中。

如果您想获得 16 个灯泡的价值,

那么我们将在右下角
讨论这八个

六边形。

这些六边形的总面积
相当于其他人的撒哈拉大伦敦的两个面积

,你需要
一路横跨西班牙和法国

的电力线将电力
从撒哈拉沙漠带到萨里。

(笑声)

我们需要一个加起来的计划。

我们需要停止大喊大叫
,开始说话。

如果我们能够进行
一次成人对话,

制定一个累积起来并开始建设的计划,

也许这场低碳革命
实际上会很有趣。

非常感谢您的聆听。

(掌声)