Delivering Fusion Energy

thank you

um so i’m a physicist you can probably

guess that there’s not many times i’ve

followed on cheerleaders

and i was watching them backstage and

they were absolutely phenomenal my heart

was racing

anyway um so yes i’m here to talk to you

today about

fusion energy this is not about me this

is about an idea

and hopefully by the end of the talk uh

you’ll be as convinced as i am

that that idea is uh is a worthy cause

um before we get on to that

let’s talk about the cheery subject of

climate change

now when i think about climate change

um i tend to adopt a similar manner to

this gentleman here and i’m sure many of

you

in the audience feel a bit the same and

i think the reason is

that it’s a very intangible subject it’s

a big

broad problem that will take millions of

people

over tens of years to solve and it’s

very hard for us to really

put that into context i’ll try and do

that here a bit for you

let’s so our goal should be to

decarbonize our energy supply we need to

not

rely on carbon-based fossil fuels to

produce energy

how do we do that or what does that

actually mean last year

globally we burnt 11 billion tons of oil

or 11 billion equivalent tons of oil

so if we want one year of

energy supply without carbon in our

energy

economy we need to displace 11 billion

tons of fossil fuels that’s the

challenge we’re facing

now we have there are innovations

underway to do this

um renewables renewables are fantastic

and they will definitely definitely play

a role

uh in the future the problem is with

renewals is reliability

what happens if the sun goes out we’re

very familiar with that here in the uk

what happens if the wind dies what

happens if the tides go out

we can’t rely on renewables for

continuous power supply we need to do

better and what we would really like

is a source of energy that is clean that

is safe

and that is continuous now luckily

mother nature has provided one for us

this is fusion fusion is the process

that powers the sun this is the sun

um we can see it today uh luckily i had

a lovely joke prepared

for just in the event that we couldn’t

see the sun today but i’ll leave that

one for next time

so fusion is the process by which two

very very small

atoms hydrogen in the case of the sun

move around

come in contact with one another bond

and form a new atom

uh in this case helium and because that

helium is

slightly less sways slightly less

than all of the parts that went in to

make it we can use equals mc squared

the most famous equation in science and

we get energy back

out of that and that’s fusion energy now

we’ve known about fusion for a little

while so fusion pioneer

sir athlete arthur stanley eddington

said in 1920 when he was describing this

energy

this resource can scarcely be other than

the subatomic energy which exists

abundantly in all matter

we sometimes dream that humanity will

one day learn how to release it and use

it for their service

the story is well nigh inexhaustible if

only it could be tapped

now at the time this was met with some

skepticism because people very quickly

realized that you needed intense

pressures

intense temperatures to get this to work

we do not argue with the critic he says

who urges

that stars are not hot enough for this

process we tell them

go find a hotter place now

eddington died in the 1940s and it’s a

real shame that he’s not around today

because actually we do know that in the

universe

there is a hotter place where we can be

reasonably certain that fusion does

occur

and it’s here in south oxfordshire this

is our lab in a little town called

column in south oxfordshire

and this in this building when it’s

running we have a machine called jet and

it is the hottest place in the solar

system

now the sun is a relatively inefficient

fusion reactor

which is very good because otherwise it

would have burnt out billions of years

ago and

we wouldn’t be in this pro in this mess

anyway but we need to do better here on

earth so we don’t use hydrogen we use

deuterium

which is one proton and one neutron and

this fuses

with tritium which is one proton and two

neutrons

and the byproduct of that is helium two

protons two neutrons

and a lonely neutron now this neutron

flight carries a huge amount of energy

with it and it flies out of the vessel

and will eventually heat some sort of

water blanket around a machine

drive a steam turbine now these fuels

are very abundant so about one in every

six thousand atoms of hydrogen in water

is actually deuterium

so you you take a bath in deuterium

tritium on the other hand is not very

abundant in nature it’s radioactive so

it doesn’t occur naturally

but we can make true tritium out of

lithium if we bombard lithium with

neutrons

we can make tritium and it turns out

that if we take all of the deuterium

in one bathtub of water all of the

lithium in one laptop

one laptop battery we’ve got enough

fusion energy there

to match 40 tons of coal or 250

kilograms of uranium

quite a lot this is enough to power your

home for 20 uh

40 years or 20 years if you’re an

american um

and to put it into more uk perspective

it’s enough to make

2.7 million cups of tea

now the most uh developed fusion reactor

that we have on earth is called the

tokamak

the tokamak uh was a device that came

out of russia in the 1950s and 60s

as you might have guessed from the name

up there that i’m not going to try and

pronounce

and the tokamak basically consists of

three key parts

at the center of the machine we have

something called a plasma now if you

take a gas and you heat that gas to

super high temperatures

all of the electrons in that gas are

going to split off from the atoms

and you’ve got a super of electrons

flying around ions flying around

interacting with each other

but no longer forming atoms that is a

plasma actually

plasmas are really really common so

something like 40 uh 97

of all matter in the known universe is

actually in the plasma state

um so we have a plasma at the center of

our machine it’s burning

at 150 million degrees and we have to

keep it there somehow

now because everything in the plasma is

charged

it reacts to a magnetic field and we can

use that to our advantage

so we place magnetic field coils all

around the machine that

um that apply a kind of magnetic cage to

this plasma and keep it in place

now that’s all well and good but we

don’t want to do that in the air

because air contains lots of nasty

things like oxygen

so we don’t want to use air so we keep

everything in

a vacuum and this is basically what a

tokamak is it’s a plasma

in a vacuum vessel housed in a magnetic

cage

now we’ve known about tocomax for about

50 or 60 years

and we’ve sunk a lot of money worldwide

into this research

and you as taxpayers except the students

in the audience

you would be well within your rights to

ask

why don’t we have fusion now where is

fusion well actually we’re very lucky

that we

can finally say that fusion is entering

the delivery era

this is eta eta is currently being built

in the south of france

and ita will be the proof of principle

eta is a 35-year collaboration

between seven partners china the eu

india japan south korea russia and the

united states

about 50 percent of all of the world’s

population is represented in ita and

about 90 percent of the world’s economy

is represented anita so it’s a massive

massive scale project

it’s costing 25 billion euros which is

as much as five

large hadron colliders or one house in

inner city london

eta is monumental in every respect it’s

about the same size as a football

stadium the whole complex

the magnets anita can levitate an

aircraft the heating systems in eta

could vaporize a car in seconds it

really is in every respect

pushing the technological capabilities

of mankind right to their very limits

so why are we doing it eta will produce

10 times the power

out from fusion energy than we put into

the machine so we’re going to multiply

the energy we put into this machine by

10 times

which is great but more importantly it

is going to produce something we call a

plasma burn

and a plasma burn occurs when the heat

inside the plasma is enough

to keep that reaction sustained so we he

we

chucked some heat into the plasma some

fusion happens

and it self heats and it keeps itself

going

and once we achieve that the

possibilities are pretty much

endless as long as we can keep this

thing contained

now eta is the solution

the problem not the problem eater is the

proof

but eater is not the solution the reason

that eater is not the solution

is because it’s too expensive for the

amount of power it’s producing

we need to do better if we’re going to

build commercial fusion reactors

and we’ve identified six challenges more

or less

that stand in the way block this kind of

commercialization

going from one to six these are we have

to make the hot bits really hot we have

to achieve these burning plasmas at 150

million degrees

we have to build the machine out of

materials that can withstand the

intense environment that we’re putting

them in so this is a really a not nice

environment to be placing materials in

some most of that heat will used will

extract as energy and this is great this

is what we want to do but some of that

heat will remain in the system

and we have to be able to remove that

heat in a safe way that doesn’t damage

the machine

we also have to be able to be

self-sufficient so we have to produce

enough tritium

that we can keep the whole process going

without uh without

sort of fizzling out we say we can do

all of those four things and we’ve

successfully run the machine for six

months

we’re still going to have to repair it

and you don’t want to send people in to

do that it’s not a nice environment to

take a walk around

so we use robots and we have to uh do

all of this through remotely operated

robotic maintenance

and finally if you can do all of that

you will have to do all of that

in sync so you have to do you have to

solve all of those challenges

in a way that marries together and can

work all at the same time using

innovative manufacturing techniques

most of which we haven’t invented yet

this is the challenge that stands before

us

now it’s very nice to be able to stand

in front of you and say we’re addressing

all of these challenges right now and

for the last few minutes of my talk i’d

just like to go through three of them

where i think some really exciting

science is happening right now or will

be happening in the very near future

so i’ll talk a little bit about what

we’re doing to make plasmas burn

i’ll talk a little bit about how we

remove this heat from our systems

and i’ll talk a bit about some of the

robots that are doing the kind of dirty

work that we can’t do

so this is jet jet stands for the joint

european taurus

and jet is based at our lab down in

south oxfordshire and this is the

hottest place in the solar system

at the centre of this machine we’re

burning 150 million degrees

when it’s running at full power jet is

operated by

uh by us on behalf of the european

commission and when it’s running it

looks something like this

so you can see it’s booting up at the

moment and what’s really interesting

about this video

is that when it really kicks in you’re

going to start seeing the video

speckling you’re going to start seeing

pixels

look like something is going a bit wrong

with the camera can you see those there

it’s starting to speckle

now this isn’t the camera going wrong

what’s actually happening here

is fusion born in the center of this

machine is producing the neutrons

which are coming out and they’re hitting

the camera sensor and when those

neutrons are hitting the camera sensor

they’re killing those pixels for a few

seconds and the pixels are dying and

that’s what the speckling is and it’s a

really nice illustration

that we are doing fusion right now on a

regular basis in jet

now jet holds the record for fusion

power um in 1997

it got 65 percent of the power out that

we put in

not one not 10 but still getting close

um and jet is going to be doing these

experiments again very very soon so

at the end of this year at the start of

next year we’re going to be running

a dedicated fusion campaign we don’t

expect to beat

65 so we don’t think jet can do better

than that

but what we will what we do hope to do

is get that 65

but extend it over a nice controlled

range

and once we do that we can say that we

can operate this machine

at its peak performance in a controlled

manner

and that puts us in a really good

position from when for when eta comes

online

so we’re operating jet now really to

prepare us for the eta

um campaigns that are going to prove

that fusion is the energy source of the

future

so assuming that we can do the fusion

and we can create all of this heat how

do you get the heat out safely that’s a

really big problem

and our other machine down in south

orchard mass upgrade

is addressing this so uh matt so to put

this into some perspective

the heat that goes down on the surfaces

in one of our experiments

uh in present-day devices is about the

same heat

that you get at peak performance of a

diesel combustion engine

um working in a climate change field i

should be a bit

embarrassed to say that i drive a diesel

so i can be reasonably assured that that

is a safe

amount of heat to deal with in eta

and in future devices we expect it to go

up to a bit like a space shuttle

re-entering the atmosphere so

quite a quite an intense source of heat

but still something that we can manage

in a fusion reactor we expect it to be a

bit more like an arc welder

anyone done any welding if you have

you’ll know the arc welders are very

good at destroying things

so we do not want a fusion reactor

acting like an arc welder we need to do

something about this

and uh in this machine that you can see

here you’ll see that there are chambers

at the top

and chambers at the bottom of the device

now these are called the super x

diverter it’s a bit of a

fancy name but these are where we’re

diverting all of the excess heat that we

can no longer deal with

inside the plasma and what we’ve done

here is quite clever because we’ve

isolated

the part of the machine that we want to

keep cold

from the part of the machine that we

want to be really hot

so we’ve come up with a design that will

allow us to keep the hot stuff hot

and the cold stuff cold and this is

exactly what we want

if we’re going to operate one of these

things in the future now this is just a

concept at this stage and we’ll be

testing

out later this year if it works as we

expect then we think it should show um

that the concept works it’s a proof of

principle and then we can start looking

at upgrading this concept up designing

this concept

and integrating it into our designs for

future fusion reactors and this is

coming online later this year so look

out for headlines

and finally say we’ve solved this heat

issue and we’ve got burning plasmas

we’ve run our machine for about six

months it’s been all of the materials in

the machine have been exposed to the

most intense source

of high energy neutrons that the world

has ever known

you don’t want to go for a stroll in a

tokamak so

if you have to repair something like say

a pipe you have to do

you have to use robots and this little

animation shows you a robot

going along inside the pipe to a point

that we need to cut

once it gets to its location it’s going

to anchor itself in place

using some ball bearings on either side

and right at the center of the robot

there’s a little laser and in a second

you’ll see this laser rotate around

and it’s going to put a cut into that

pipe just where we need to repair it

now all of these things are operated by

humans but the humans are sitting

hundreds of meters away from these

robots in the nice safety uh in their

nice

armchairs up in a control room somewhere

and all of these things are done

remotely now you can imagine that when

you have to do things with robots even

simple jobs like

cutting a pipe become very very

non-trivial indeed

and we have lots of these jobs that need

to be done in a fusion reactor

once it’s come offline now this sounds a

bit like science fiction

but actually these things are designed

these things work and these things have

been tested and you can see here this is

a little robot

that we have down at the lab and these

are the two little bits of pipe that

it’s cut

so these things are we’re actually

thinking about these questions even

though they’re 40

30 20 years away at the moment we’re

thinking about these solutions right now

we have a center

down at our lab where we’re

investigating lots of these applications

with different robots

and to carry out these tasks that are

absolutely vital

for keeping our future fusion reactors

online

now hopefully i’ve done a good job of

convincing you that the future is fusion

fusion energy will be the energy source

of the future and it’s well worth all of

the time

money and dedication that we put into it

now but you don’t need to take my word

for it

why not listen to stephen hawking so

just before he died stephen hawking was

asked

what world-changing idea small or big

would you like to see implemented by

humanity

that is easy he said it’s not easy

i would like to see the development of

fusion power to give an unlimited supply

of clean energy

and um we’re getting there so

fusion power is still 20 years in the

future but hopefully i’ve shown you that

some of the exciting science we’re doing

right now is on the cusp of making

something like this

a reality a future fusion power plant

producing clean

safe abundant energy for our future

generations

thank you very much

谢谢你,

嗯,所以我是一名物理学家,你可能

猜到我关注啦啦队的次数并不多

,我在后台看着他们,

他们绝对是惊人的,无论如何我的心

都在跳动,

所以是的,我是来和你谈谈的 你

今天关于

聚变能这不是关于我这

是关于一个

想法希望在谈话结束时

你会像我一样

相信这个想法是一个有价值的

事业在我们开始之前

让我们 现在谈谈气候变化这个令人愉快的话题,

当我想到气候变化时,

嗯,我倾向于采取与

这里这位先生相似的方式,我相信在座的许多人都有

同样的感觉,

我认为原因

是 这是一个非常无形的主题 这是

一个

广泛的问题,需要数百

万人

在数十年的时间里才能解决,

我们很难真正

把它放在上下文中我会尝试

在这里为你做一些

让我们的目标 应该是使

我们的能源供应脱碳 我们不需要

依赖碳基化石燃料来

生产能源

我们如何做到这一点或这实际上意味着什么

去年

全球我们燃烧了 110 亿吨石油

或 110 亿当量吨石油,

所以如果我们想要一年

在我们的能源经济中没有碳的能源供应

我们需要取代 110

亿吨化石燃料 这是

我们现在面临的挑战

我们有创新

正在进行中 未来的问题是

更新是可靠性

如果太阳熄灭了会发生什么我们

非常熟悉英国这里

如果风停了

会发生什么如果潮汐退去会发生什么

我们不能依靠可再生能源来提供

持续的电力 供应我们需要

做得更好,我们真正想要的

是一种清洁的

、安全

的、持续的能源,幸运的是

大自然为我们提供了

这种能源,这就是核聚变

为太阳提供能量的过程 这是太阳

嗯,我们今天

可以看到 是两个

非常非常小的

原子氢在太阳的情况下

四处移动的过程,它们

相互接触

并形成一个新的原子,

呃,在这种情况下是氦,因为

氦的

摇摆略

小于所有的

我们可以使用的部分 等于 mc

平方科学中最著名的方程,

我们从中得到

能量,这就是聚变能量 现在

我们已经了解聚变有一段

时间了,所以聚变先驱

先生,运动员亚瑟·斯坦利·爱丁顿

他在 1920 年描述这种能量时说,

这种资源只能

是亚原子能量,它

大量存在于所有物质中,

我们有时梦想人类

有一天会学会如何释放它并将

其用于他们的服务 冰

这个故事几乎是无穷无尽的,

只要它现在可以被挖掘

,当时这遭到了一些

怀疑,因为人们很快

意识到你需要巨大的

压力高温才能让它发挥作用

我们不与批评家争论他说

敦促恒星对于这个过程还不够热,

我们告诉他们

去找一个更热的地方,现在

爱丁顿在 1940 年代去世了,

很遗憾他今天不在身边,

因为实际上我们确实知道在

宇宙中

有一个更热的地方 可以

合理地确定核聚变确实

发生了

,它在南牛津郡这是我们在南牛津郡

一个叫做柱子的小镇的实验室

,在这栋大楼里,当它运行时,

我们有一台叫做喷气机的机器,

它是太阳能中最热的地方

现在的系统太阳是一个效率相对较低的

聚变反应堆

,这非常好,因为否则它

会在数十亿年前烧毁

我们就不会参加这个专业 无论如何,在这个混乱中

,但我们需要在地球上做得更好,

所以我们不使用氢,我们使用

,它是一个质子和一个中子,

与氚融合,它是一个质子和两个

中子

,其副产品是氦二

质子 两个中子

和一个孤独的中子 现在这个中子

飞行携带了大量的能量

,它飞出容器

,最终会加热

机器周围的某种水层,

驱动蒸汽轮机,现在这些燃料

非常丰富,所以 水中每

六千个氢原子中

就有一个实际上是氘,

所以你在氘

氚中洗澡另一方面氚

在自然界中并不丰富,它具有放射性,

因此不会自然产生,

但我们可以用锂制造真正的氚

如果我们用中子轰击锂,

我们可以制造氚,事实证明

,如果我们把所有的氘

放在一个浴缸里的水里,把所有的

锂放在一台笔记本电脑里,

一个笔记本电脑的电池,我们就得到了 那里的

聚变能

足以匹配 40 吨煤或 250

公斤铀,

这足以为您的

房屋供电 20 呃

40 年或 20 年,如果您是

美国人,

并且将其放在更英国的角度来看,

这就足够了 现在制作

270 万杯茶

我们在地球上最发达的聚变反应堆被称为

托卡马克 托卡马克是

1950 和 60 年代从俄罗斯出现的装置,

正如你可能从上面的名字猜到

的那样 我不会尝试和

发音

,托卡马克基本上由机器中心的

三个关键部分组成,

如果

您使用一种气体并将该气体加热到

超高温,

那么我们现在有一种称为等离子体的东西 气体

将从原子中分离出来

,你有一个超级电子

在离子周围飞来飞去

,彼此相互作用,

但不再形成

等离子体,实际上

等离子体真的很常见,所以

有些东西 l ike 40 uh 97

已知宇宙中的所有物质

实际上都处于等离子体状态,

嗯,所以我们的机器中心有一个等离子体,

在 1.5 亿度的温度下燃烧,我们现在必须以

某种方式将它保持在那里,

因为等离子体中的一切都是

充电

它会对磁场产生反应,我们可以

利用它来发挥我们的优势,

所以我们在机器周围放置磁场线圈

嗯,对这种等离子体施加一种磁笼

并将其保持在

原位,这一切都很好,但我们

不想在空气中这样做,

因为空气中含有很多讨厌的

东西,比如氧气,

所以我们不想使用空气,所以我们将

所有东西都保持

在真空中,这基本上就是

托卡马克,它

是真空容器中的等离子体

现在我们已经知道托科马克斯大约

50 或 60 年了,

而且我们已经在全球范围内

为这项研究投入了大量资金

,作为纳税人,除了

听众中的学生,

您完全有权

要求

我们为什么不 现在有融合 融合在哪里

实际上我们很幸运

,我们

终于可以说融合正在

进入交付时代

这是 eta eta 目前正在

法国南部建造

,ita 将是原理的证明

eta 是 35 -

七个合作伙伴之间的年度合作中国、欧盟、

印度、日本、韩国、俄罗斯和

美国,

大约 50% 的世界

人口都在 ita,

世界经济的 90% 左右都在

anita,所以这是一个巨大的

大规模

项目 耗资 250 亿欧元,

相当于 5 台

大型强子对撞机或伦敦市中心的一所房子

埃塔在各个方面都是巨大的 它

与足球场差不多大小

整个建筑

群 磁铁安妮塔可以悬浮

飞机 埃塔的供暖系统

可以在几秒钟内使汽车汽化它

确实在各个方面都

人类的技术能力推向了极限,

所以我们为什么要这样做 它 eta 将产生

10 倍

于我们投入机器中的聚变能量

,因此

我们将把投入这台机器中的能量乘以

10 倍

,这很棒,但更重要的

是,它将产生我们称之为 a 的东西

等离子燃烧

和等离子燃烧发生在

等离子内部的热量

足以保持反应持续时,所以我们

将一些热量注入等离子中,一些

聚变发生

,它会自热,它会继续保持下去

,一旦我们实现了这种

可能性 几乎

没完没了只要我们现在能把这个

东西控制住

如果我们要

建造商业聚变反应堆

,我们需要做得更好,我们已经确定了

或多或少阻碍这种

商业化的六个挑战

从 1 到 6,这些是我们

必须让炽热的钻头变得非常热 我们必须

在 1.5 亿度的温度下实现这些燃烧的等离子体

我们必须用

能够承受

我们将它们放入的强烈环境的材料制造机器

所以这是一个非常糟糕的

环境,将材料放置在

其中大部分将使用的热量将

提取为能量,这很好,这

是我们想要做的,但其中一些

热量将保留在系统中

,我们必须 能够以

不损坏机器的安全方式

去除热量 我们说我们可以做

所有这四件事,我们已经

成功运行机器六个月了

我们仍然需要修理它

,你不想派人

去做这不是一个好的环境

到处走走,

所以我们用 r obots,我们必须

通过远程操作的

机器人

维护来完成所有这

一切 结合在一起,

可以同时使用

创新的制造技术

,其中大部分是我们尚未发明的,

这是摆在我们面前的挑战,

现在能够

站在你面前说我们是非常好的 现在就解决

所有这些挑战

,在我演讲的最后几分钟,

我只想介绍

其中的三个,我认为一些真正令人兴奋的

科学正在发生或

将在不久的将来发生,

所以我' 我会谈谈

我们正在做些什么来让等离子体燃烧

我们不能做的工作,

这就是je t jet 代表欧洲金牛座联合

,jet 位于我们位于

南牛津郡的实验室,这

是太阳系中最热的地方,

位于这台机器的中心,

当它以全功率运行时,我们正在燃烧 1.5 亿度

由我们代表欧盟

委员会运营,当它运行时,它

看起来像这样,

所以你可以看到它正在启动,这个视频

真正有趣的

是,当它真正启动时,你

会开始 看到视频出现

斑点 你会开始看到

像素

看起来像相机出了点问题

你能看到那些

那里开始出现斑点

现在这不是相机出现问题

这里实际发生的

是融合诞生于 这

台机器的中心正在产生出来的中子

,它们

撞击相机传感器,当这些

中子撞击相机传感器时,

它们会在几秒钟内杀死这些像素

nds 和像素正在消亡,

这就是斑点,这是一个

非常好的说明

,我们现在正在喷气机中

定期进行聚变,

现在喷气机保持着聚变功率的记录,

嗯,它在 1997

年获得了 65% 的功率输出

我们投入的

不是 10 个,但仍然接近

嗯,jet 很快就会再次进行这些

实验,所以

在今年年底和

明年年初,我们将进行

一次专门的融合运动 我们

预计不会超过

65,所以我们认为喷气式飞机不能做得

比这更好,

但我们希望做的

是获得 65,

但将其扩展到一个很好的可控

范围内

,一旦我们做到了,我们可以说 我们

可以以可控的方式操作这台机器

的最佳性能

,这让我们

从 eta 上

线的时间开始处于一个非常好的位置,

所以我们现在正在运行 jet 真的是为了

让我们为即将到来的 eta

um 活动做好准备

证明聚变是能源 未来

所以假设我们可以进行融合

并且我们可以产生所有这些热量

你如何安全地排出热量这是一个

非常大的

问题我们在南部

果园大规模升级的其他机器

正在解决这个问题所以呃马特所以

从某种角度来看

在我们的一个实验中,

在当今的设备中,表面上下降的热量

与在柴油内燃机的峰值性能下所获得的热量大致相同,

嗯,在气候变化领域工作,我

应该是 有点

尴尬地说我开的是柴油车,

所以我可以合理地保证这

在 eta 中处理的安全热量

,在未来的设备中,我们预计它会上

升到有点像航天飞机

重新进入 大气

是一个相当强烈的热源,

但仍然是

我们可以在聚变反应堆中管理

的东西 在 d 销毁东西,

所以我们不希望聚变反应堆

像弧焊机一样,我们需要对此做点什么

,呃,在这台机器上,你可以

在这里看到,你会看到

顶部

有腔室,底部有腔室

现在这些设备被称为 super x

分流器,这个

名字有点花哨,但这些是我们

转移等离子体内部无法再处理的所有多余热量的地方

,我们在这里所做

的非常聪明,因为 我们已经

将我们想要

保持低温

的机器部分与我们

想要非常热的机器部分隔离开

来,因此我们提出了一种设计,可以

让我们保持热的东西

冷热 冷的东西,

如果我们将来要操作这些东西中的一个,这正是我们想要的,

现在这只是

现阶段的一个概念,我们将在

今年晚些时候进行测试,如果它按我们

预期的那样工作,那么我们 认为它应该

表明这个概念有效,它是公关的证明

inciple 然后我们可以开始

考虑升级这个概念,设计

这个概念

并将其集成到我们

的未来聚变反应堆设计中,这将

在今年晚些时候上线,所以请

留意头条新闻

,最后说我们已经解决了这个热

问题,我们 有燃烧的等离子体

我们已经运行我们的机器大约六个月了 机器中

的所有材料

都暴露在世界上

最强烈

的高能中子源中,

你不想去 在

托卡马克中漫步,所以

如果你必须修理

管道,比如你必须做的事情,

你必须使用机器人,这个小

动画向你展示了一个

机器人在管道内移动到一个

我们需要切割的点,

一旦它到达 它的位置 它将使用两侧的一些滚珠轴承将

自身固定在适当

的位置,并且在机器人的中心

有一个小激光,一秒钟后

你会看到这个激光旋转

,它会切入 到那个

管道,就是我们需要修理的地方,

现在所有这些东西都是由人类操作的,

但人类坐在

离这些机器人数百米远的地方,非常

安全,呃,他们

坐在控制室里的漂亮扶手椅上

,所有这些 现在事情都是远程完成的,

你可以想象,当

你不得不用机器人做事情时,即使是

简单的工作,比如

切割管道,也确实变得非常

非常重要,

而且我们有很多这样的工作

需要在聚变

反应堆到来后完成 现在离线 这听起来

有点像科幻小说,

但实际上这些东西是设计

出来的

它被削减了,

所以这些事情是我们实际上正在

考虑这些问题,

即使它们距离我们还有 40

30 20 年的时间,我们现在正在

考虑这些解决方案,

我们有一个

中心在 ou r 实验室,我们正在

用不同的机器人研究许多这些应用,

并执行这些任务,这些任务

对于保持我们未来的聚变反应堆

在线

现在绝对至关重要,希望我已经做得很好,

让你相信未来是聚变

聚变能源 将成为未来的能源

,我们现在投入的所有时间金钱和奉献都是值得的,

但你不需要相信我的

话,

为什么不在斯蒂芬霍金死前听斯蒂芬霍金

被问到你希望看到

人类

实现什么改变世界的想法很容易他说这不容易

所以

聚变能力在未来还有 20 年,

但希望我已经向你展示

了我们现在正在做的一些令人兴奋的科学正在

使

这样的事情

成为现实的风口浪尖成为未来的聚变波

为我们的后代生产清洁安全丰富能源的工厂

非常感谢