What triggers a chemical reaction Kareem Jarrah

You know how sometimes
you go to bake a cake

but your bananas have all gone rotten,

your utensils have rusted,

you trip and pour all of your baking soda
into the vinegar jug,

and then your oven explodes?

My friend, you and your chemical reactions
have fallen victim to enthalpy and entropy

and, boy, are they forces
to be reckoned with.

Now, your reactants are all products.

So, what are these “E” words,
and what’s their big idea?

Let’s start with enthalpy,

an increase or decrease of energy
during a chemical reaction.

Every molecule has a certain amount
of chemical potential energy

stored within the bonds between its atoms.

Chemicals with more energy
are less stable,

and thus, more likely to react.

Let’s visualize the energy flow
in a reaction,

the combustion of hydrogen and oxygen,
by playing a round of crazy golf.

Our goal is to get a ball, the reactant,
up a small rise

and down the other much steeper slope.

Where the hill goes up,
we need to add energy to the ball,

and where it goes down, the ball releases
energy into its surroundings.

The hole represents the product,
or result of the reaction.

When the reaction period ends,
the ball is inside the hole,

and we have our product: water.

This, like when our oven exploded,
is an exothermic reaction,

meaning that the chemical’s final energy
is less than its starting energy,

and the difference has been added
to the surrounding environment

as light and heat.

We can also play out
the opposite type of reaction,

an endothermic reaction,

where the final energy is greater
than the starting energy.

That’s what we were trying
to achieve by baking our cake.

The added heat from the oven would
change the chemical structure

of the proteins in the eggs
and various compounds in the butter.

So that’s enthalpy.

As you might suspect,

exothermic reactions are more likely
to happen than endothermic ones

because they require less energy to occur.

But there’s another independent factor
that can make reactions happen:

entropy.

Entropy measures a chemical’s randomness.

Here’s an enormous pyramid of golf balls.

Its ordered structure
means it has low entropy.

However, when it collapses,
we have chaos everywhere,

balls bouncing high and wide.

So much so that some
even go over the hill.

This shift to instability,
or higher entropy,

can allow reactions to happen.

As with the golf balls,
in actual chemicals

this transition from structure to disorder
gets some reactants past the hump

and lets them start a reaction.

You can see both enthalpy
and entropy at play

when you go to light
a campfire to cook dinner.

Your match adds enough energy

to activate the exothermic reaction
of combustion,

converting the high-energy
combustible material in the wood

to lower energy carbon dioxide and water.

Entropy also increases
and helps the reaction along

because the neat, organized log of wood

is now converted into randomly moving
water vapor and carbon dioxide.

The energy shed by this
exothermic reaction

powers the endothermic reaction
of cooking your dinner.

Bon appétit!

你知道有时
你去烤蛋糕,

但你的香蕉都烂了,

你的器具生锈了,

你绊倒了,把所有的小苏打都
倒进了醋罐里,

然后你的烤箱就爆炸了?

我的朋友,你和你的化学反应
已经成为焓和熵的牺牲品

,男孩,它们
是不可忽视的力量。

现在,你的反应物都是产物。

那么,这些“E”字
是什么,它们的大创意是什么?

让我们从焓开始,

即化学反应过程中能量的增加或减少

每个分子都有一定量
的化学势能

存储在其原子之间的键中。

具有更多能量的化学物质
不太稳定

,因此更容易发生反应。

让我们通过打一场疯狂的高尔夫球来形象化
反应中的能量流动,

即氢气和氧气的燃烧

我们的目标是让一个球,即反应物,
沿着一个小坡度上升,

然后沿着另一个更陡峭的斜坡下降。

在山丘上升的地方,
我们需要为球添加能量,

而在山丘下降的地方,球会
向周围环境释放能量。

孔代表反应的产物
或结果。

当反应期结束时
,球在洞内

,我们得到了我们的产品:水。

这就像我们的烤箱爆炸时一样,
是放热反应,

这意味着化学物质的最终
能量小于其起始能量,

并且差异已作为光和热添加
到周围环境

中。

我们还可以
进行相反类型的反应,

即吸热反应,

其中最终能量
大于起始能量。

这就是我们试图
通过烘焙蛋糕来实现的目标。

来自烤箱的额外热量会
改变

鸡蛋中蛋白质
和黄油中各种化合物的化学结构。

这就是焓。

您可能会怀疑,

放热反应
比吸热反应更容易发生,

因为它们发生所需的能量更少。

但是还有另一个独立的
因素可以使反应发生:

熵。

熵衡量化学物质的随机性。

这是一个巨大的高尔夫球金字塔。

它的有序结构
意味着它具有低熵。

然而,当它崩溃时,
我们到处都是混乱,

球弹得又高又宽。

如此之多,以至于有些人
甚至翻过山坡。

这种向不稳定性
或更高熵的转变

可以让反应发生。

与高尔夫球一样,
在实际的化学物质中,

这种从结构到无序的转变
会使一些反应物通过驼峰

并让它们开始反应。 当你去点燃篝火做饭时,

你可以看到焓
和熵在起作用

你的火柴添加了足够的能量

来激活燃烧的放热
反应,


木材中的高能可燃材料转化

为低能二氧化碳和水。

熵也会增加
并有助于反应,

因为整齐、有组织的木材

现在被转化为随机移动的
水蒸气和二氧化碳。

这种放热反应释放的能量

为烹饪晚餐的吸热反应提供了动力。

胃口好!