The key to a better malaria vaccine Faith Osier

There are 200 million clinical cases

of falciparum malaria
in Africa every year,

resulting in half a million deaths.

I would like to talk to you
about malaria vaccines.

The ones that we have made to date
are simply not good enough.

Why?

We’ve been working at it
for 100 plus years.

When we started, technology was limited.

We could see just a tiny fraction
of what the parasite really looked like.

Today, we are awash with technology,

advanced imaging and omics platforms –

genomics, transcriptomics, proteomics.

These tools have given us a clearer view

of just how complex
the parasite really is.

However, in spite of this,

our approach to vaccine design
has remained pretty rudimentary.

To make a good vaccine,
we must go back to basics

to understand how our bodies
handle this complexity.

People who are frequently
infected with malaria

learn to deal with it.

They get the infection,
but they don’t get ill.

The recipe is encoded in antibodies.

My team went back to our complex parasite,

probed it with samples from Africans
who had overcome malaria

to answer the question:

“What does a successful
antibody response look like?”

We found over 200 proteins,

many of which are not
on the radar for malaria vaccines.

My research community may be missing out
important parts of the parasite.

Until recently, when one had identified
a protein of interest,

they tested whether it might be
important for a vaccine

by conducting a cohort study.

This typically involved about 300
participants in a village in Africa,

whose samples were analyzed to see

whether antibodies to the protein
would predict who got malaria

and who did not.

In the past 30 years,

these studies have tested
a small number of proteins

in relatively few samples

and usually in single locations.

The results have not been consistent.

My team essentially collapsed
30 years of this type of research

into one exciting experiment,
conducted over just three months.

Innovatively, we assembled 10,000 samples

from 15 locations
in seven African countries,

spanning time, age
and the variable intensity

of malaria experienced in Africa.

We used omics intelligence
to prioritize our parasite proteins,

synthesize them in the lab

and in short, recreated
the malaria parasite on a chip.

We did this in Africa,
and we’re very proud of that.

(Applause)

The chip is a small glass slide,

but it gives us incredible power.

We simultaneously gathered data
on over 100 antibody responses.

What are we looking for?

The recipe behind a successful
antibody response,

so that we can predict
what might make a good malaria vaccine.

We’re also trying to figure out

exactly what antibodies
do to the parasite.

How do they kill it?

Do they attack from multiple angles?
Is there synergy?

How much antibody do you need?

Our studies suggest that having
a bit of one antibody won’t be enough.

It might take high
concentrations of antibodies

against multiple parasite proteins.

We’re also learning that antibodies
kill the parasite in multiple ways,

and studying any one of these in isolation
may not adequately reflect reality.

Just like we can now see the parasite
in greater definition,

my team and I are focused

on understanding how our bodies
overcome this complexity.

We believe that this could provide
the breakthroughs that we need

to make malaria history
through vaccination.

Thank you.

(Applause)

(Cheers)

(Applause)

Shoham Arad: OK, how close
are we actually to a malaria vaccine?

Faith Osier: We’re just
at the beginning of a process

to try and understand
what we need to put in the vaccine

before we actually start making it.

So, we’re not really close to the vaccine,
but we’re getting there.

SA: And we’re hopeful.

FO: And we’re very hopeful.

SA: Tell me about SMART,
tell me what does it stand for

and why is it important to you?

FO: So SMART stands for South-South
Malaria Antigen Research Partnership.

The South-South
is referring to us in Africa,

looking sideways to each other
in collaboration,

in contrast to always looking to America
and looking to Europe,

when there is quite
some strength within Africa.

So in SMART,

apart from the goal that we have,
to develop a malaria vaccine,

we are also training African scientists,

because the burden
of disease in Africa is high,

and you need people who will continue
to push the boundaries

in science, in Africa.

SA: Yes, yes, correct.

(Applause)

OK, one last question.

Tell me, I know you
mentioned this a little bit,

but how would things actually change
if there were a malaria vaccine?

FO: We would save
half a million lives every year.

Two hundred million cases.

It’s estimated that malaria costs Africa
12 billion US dollars a year.

So this is economics.

Africa would simply thrive.

SA: OK. Thank you, Faith.

Thank you so much.

(Applause)

非洲每年有 2 亿

恶性疟疾临床病例

导致 50 万人死亡。

我想和你
谈谈疟疾疫苗。

我们迄今为止所做的
那些根本不够好。

为什么?

我们已经
为此工作了 100 多年。

当我们开始时,技术是有限的。

我们只能
看到寄生虫真实外观的一小部分。

今天,我们充斥着技术、

先进的成像和组学平台——

基因组学、转录组学、蛋白质组学。

这些工具让我们

对寄生虫的真正复杂程度有了更清晰的认识。

然而,尽管如此,

我们的疫苗设计
方法仍然非常初级。

为了制造出好的疫苗,
我们必须回归基础

,了解我们的身体如何
处理这种复杂性。

经常
感染疟疾的人

学会了应对它。

他们会感染,
但不会生病。

配方编码在抗体中。

我的团队回到我们复杂的寄生虫,

用来自战胜疟疾的非洲人的样本对其进行探测,

以回答这个问题:

“成功的
抗体反应是什么样的?”

我们发现了 200 多种蛋白质,

其中许多蛋白质并未出现
在疟疾疫苗的雷达上。

我的研究团体可能会遗漏
寄生虫的重要部分。

直到最近,当人们确定
了一种感兴趣的蛋白质时,

他们通过进行队列研究来测试它是否
对疫苗很重要

这通常涉及
非洲一个村庄的大约 300 名参与者,

他们的样本被分析以查看

蛋白质抗体
是否可以预测谁感染了疟疾

,谁没有。

在过去的 30 年中,

这些研究

在相对较少的样本中测试了少量蛋白质,

并且通常在单个位置进行。

结果并不一致。

我的团队基本上将
30 年的这类研究折叠

成一个激动人心的实验,只
进行了三个月。

我们以创新的方式


七个非洲国家的 15 个地点收集了 10,000 个样本,

涵盖了非洲经历的时间、年龄
和不同强度

的疟疾。

我们使用组学智能
来优先考虑我们的寄生虫蛋白,

在实验室中合成它们

,简而言之,
在芯片上重建疟疾寄生虫。

我们在非洲做到了这一点
,我们为此感到非常自豪。

(掌声

) 芯片是一个小的载玻片,

但它给了我们不可思议的力量。

我们同时收集
了超过 100 种抗体反应的数据。

我们在找什么?

成功的抗体反应背后的秘诀

这样我们就可以预测
什么可以制造出好的疟疾疫苗。

我们还试图弄清楚

抗体对寄生虫的确切作用。

他们如何杀死它?

他们是否从多个角度进行攻击?
有协同作用吗?

你需要多少抗体?

我们的研究表明,仅使用
一种抗体是不够的。

它可能需要

针对多种寄生虫蛋白的高浓度抗体。

我们还了解到抗体
以多种方式杀死寄生虫

,孤立地研究其中任何一种
可能不足以反映现实。

就像我们现在可以
更清晰地看到寄生虫一样,

我和我的团队专注

于了解我们的身体如何
克服这种复杂性。

我们相信,这可以
提供我们通过疫苗接种

创造疟疾历史所需的突破

谢谢你。

(掌声)

(欢呼声)

(掌声)

Shoham Arad:好的,
我们实际上离疟疾疫苗有多近?

Faith Osier:在我们真正开始制造疫苗之前,我们正
处于

尝试
了解我们需要在疫苗中加入

什么的过程的开始。

所以,我们还没有真正接近疫苗,
但我们正在接近那里。

SA:我们充满希望。

FO:我们很有希望。

SA:说说 SMART,
告诉我它代表什么

,为什么它对你很重要?

FO:所以 SMART 代表南南
疟疾抗原研究伙伴关系。

南南指的是我们在非洲,在合作中

相互观察对方

,而不是在非洲有相当强的实力时总是把目光投向美国
和欧洲

所以在 SMART,

除了我们的目标
,开发一种疟疾疫苗,

我们还在培训非洲科学家,

因为
非洲的疾病负担很重

,你需要能够
继续推动

科学界限的人,在 非洲。

SA:是的,是的,正确的。

(掌声)

好的,最后一个问题。

告诉我,我知道你
提到了一点,


如果有疟疾疫苗,情况会如何改变?

FO:我们每年将挽救
50 万人的生命。

两亿例。

据估计,疟疾每年给非洲造成
120 亿美元的损失。

所以这就是经济学。

非洲只会蓬勃发展。

萨:好的。 谢谢你,信仰。

太感谢了。

(掌声)