How high can you count on your fingers Spoiler much higher than 10 James Tanton

How high can you count on your fingers?

It seems like a question
with an obvious answer.

After all, most of us have ten fingers,

or to be more precise,

eight fingers and two thumbs.

This gives us a total of ten digits
on our two hands,

which we use to count to ten.

It’s no coincidence that the ten symbols
we use in our modern numbering system

are called digits as well.

But that’s not the only way to count.

In some places, it’s customary to
go up to twelve on just one hand.

How?

Well, each finger is divided
into three sections,

and we have a natural pointer
to indicate each one, the thumb.

That gives us an easy to way to count
to twelve on one hand.

And if we want to count higher,

we can use the digits on our other hand to
keep track of each time we get to twelve,

up to five groups of twelve, or 60.

Better yet, let’s use the sections
on the second hand

to count twelve groups of twelve,
up to 144.

That’s a pretty big improvement,

but we can go higher by finding more
countable parts on each hand.

For example, each finger
has three sections and three creases

for a total of six things to count.

Now we’re up to 24 on each hand,

and using our other hand to mark
groups of 24

gets us all the way to 576.

Can we go any higher?

It looks like we’ve reached the limit
of how many different finger parts

we can count with any precision.

So let’s think of something different.

One of our greatest
mathematical inventions

is the system of positional notation,

where the placement of symbols allows
for different magnitudes of value,

as in the number 999.

Even though the same symbol is used
three times,

each position indicates a different
order of magnitude.

So we can use positional value on
our fingers to beat our previous record.

Let’s forget about finger sections
for a moment

and look at the simplest case of having
just two options per finger,

up and down.

This won’t allow us to represent
powers of ten,

but it’s perfect for the counting system
that uses powers of two,

otherwise known as binary.

In binary, each position has double
the value of the previous one,

so we can assign
our fingers values of one,

two,

four,

eight,

all the way up to 512.

And any positive integer,
up to a certain limit,

can be expressed
as a sum of these numbers.

For example, the number seven
is 4+2+1.

so we can represent it by having
just these three fingers raised.

Meanwhile, 250 is 128+64+32+16+8+2.

How high an we go now?

That would be the number with all ten
fingers raised, or 1,023.

Is it possible to go even higher?

It depends on how dexterous you feel.

If you can bend each finger just halfway,
that gives us three different states -

down,

half bent,

and raised.

Now, we can count using
a base-three positional system,

up to 59,048.

And if you can bend your fingers
into four different states or more,

you can get even higher.

That limit is up to you,
and your own flexibility and ingenuity.

Even with our fingers in just two
possible states,

we’re already working pretty efficiently.

In fact, our computers are based
on the same principle.

Each microchip consists of tiny
electrical switches

that can be either on or off,

meaning that base-two is the default way
they represent numbers.

And just as we can use this system to
count past 1,000 using only our fingers,

computers can perform billions
of operations

just by counting off 1’s and 0’s.

你的手指能数到多高?

这似乎是
一个有明显答案的问题。

毕竟,我们大多数人都有十根手指,

或者更准确地说,

八根手指和两个拇指。

这使我们的两只手总共有十个数字

,我们用它来数到十。

我们在现代编号系统中使用的十个符号

也称为数字,这并非巧合。

但这不是唯一的计算方法。

在某些地方,习惯
上只用一只手就可以达到十二个。

如何?

好吧,每个手指都
分为三个部分

,我们有一个自然的指针
来指示每个部分,即拇指。

这为我们提供了一种
单手数到十二的简单方法。

如果我们想数得更高,

我们可以使用另一只手的数字来
跟踪我们每次达到 12、

最多 5 组 12 或 60。

更好的是,让我们使用
秒针上的部分

来记录 数 12 组,每组 12 个,
最多 144 个。

这是一个相当大的改进,

但我们可以通过
在每只手上找到更多可数部分来提高。

例如,每个手指
有三个部分和三个折痕

,总共需要计算六件事。

现在我们每只手最多 24 个,

而用另一只手标记
24 个组,

我们一直到 576 个

。我们可以再高一点吗?

看起来我们已经达到了可以以任何精度计算
多少个不同手指部分的极限

所以让我们想一些不同的东西。

我们最伟大的
数学发明之一

是位置符号系统,

其中符号的位置
允许不同大小的值,

如数字 999。

即使使用相同的符号
3 次,

每个位置表示不同
的数量级。

所以我们可以使用手指上的位置值
来打破我们之前的记录。

让我们暂时忘记手指部分

,看看
每个手指只有两个选项的最简单情况,

向上和向下。

这不允许我们表示
10 的幂,

但它非常适合
使用 2 的幂的计数系统,

也称为二进制。

在二进制中,每个位置
的值都是前一个位置的两倍,

因此我们可以为
手指分配一、

二、

四、

八的值,

一直到

512。任何正整数,
直到一定的限制,

都可以是 表示
为这些数字的总和。

例如,数字 7
是 4+2+1。

所以我们可以
通过举起这三个手指来表示它。

同时,250 为 128+64+32+16+8+2。

我们现在走多高?

那将是所有十个
手指都抬起的数字,即 1,023。

有没有可能走得更高?

这取决于你感觉有多灵巧。

如果您可以将每个手指弯曲到一半,
那么我们就会得到三种不同的状态——

向下、

半弯曲

和抬起。

现在,我们可以使用
三基位置系统进行计数,

最多可达到 59,048 个。

如果你能把你的手指弯曲
成四种或更多不同的状态,

你就能变得更高。

该限制取决于您,
以及您自己的灵活性和独创性。

即使我们的手指只有两种
可能的状态,

我们也已经非常高效地工作了。

事实上,我们的计算机也是
基于同样的原理。

每个微芯片都由

可以打开或关闭的微型电子开关组成,

这意味着以二为底是
它们表示数字的默认方式。

就像我们可以使用这个系统
只用手指计算超过 1000 次一样,

计算机

只需计算 1 和 0 就可以执行数十亿次操作。