Is fire a solid a liquid or a gas Elizabeth Cox

Sitting around a campfire,
you can feel its heat,

smell the woody smoke,
and hear it crackle.

If you get too close,

it burns your eyes
and stings your nostrils.

You could stare at the bright
flames forever

as they twist and flicker
in endless incarnations.

But what exactly are you looking at?

The flames are obviously not solid,

nor are they liquid.

Mingling with the air, they’re
more like a gas,

but more visible–and more fleeting.

And on a scientific level,
fire differs from gas

because gases can exist in
the same state indefinitely

while fires always burn out eventually.

One misconception is that
fire is a plasma,

the fourth state of matter in which atoms

are stripped of their electrons.

Like fire and unlike the
other kinds of matter,

plasmas don’t exist in a stable
state on earth.

They only form when gas is exposed
to an electric field or superheated

to temperatures of thousands
or tens of thousands of degrees.

By contrast, fuels like wood
and paper burn

at a few hundred degrees —far below the

threshold of what’s usually
considered a plasma.

So if fire isn’t a solid, liquid, gas,

or a plasma, what does that leave?

It turns out fire isn’t actually
matter at all.

Instead, it’s our sensory experience of a
chemical reaction called combustion.

In a way, fire is like the leaves
changing color in fall,

the smell of fruit as it ripens,

or a firefly’s blinking light.

All of these are sensory clues that a

chemical reaction is taking place.

What differs about fire is that
it engages a lot of

our senses at the same time,
creating the kind of vivid

experience we expect to come
from a physical thing.

Combustion creates that sensory experience

using fuel, heat, and oxygen.

In a campfire, when the logs are
heated to their ignition temperature,

the walls of their cells decompose,

releasing sugars and other
molecules into the air.

These molecules then react
with airborne oxygen

to create carbon dioxide and water.

At the same time, any trapped
water in the logs

vaporizes, expands, ruptures
the wood around it,

and escapes with a satisfying crackle.

As the fire heats up, the carbon
dioxide and water vapor

created by combustion expand.

Now that they’re less dense,
they rise in a thinning column.

Gravity causes this expansion and rising,
which gives

flames their characteristic taper.

Without gravity, molecules don’t separate

by density and the flames
have a totally different shape.

We can see all of this because combustion

also generates light.

Molecules emit light when heated,

and the color of the light depends

on the temperature of the molecules.

The hottest flames are white or blue.

The type of molecules in a fire can

also influence flame color.

For instance, any unreacted
carbon atoms from the logs

form little clumps of soot that rise

into the flames and emit the yellow-orange

light we associate with a campfire.

Substances like copper, calcium chloride,

and potassium chloride can add their

own characteristic hues to the mix.

Besides colorful flames,

fire also continues to generate heat
as it burns.

This heat sustains the flames by keeping

the fuel at or above ignition temperature.

Eventually, though, even the hottest fires

run out of fuel or oxygen.

Then, those twisting flames
give a final hiss

and disappear with a wisp of smoke

as if they were never there at all.

坐在篝火旁,
你可以感受到它的热量,

闻到木质的烟雾
,听到它噼啪作响。

如果你靠得太近,

它会灼伤你的眼睛
并刺痛你的鼻孔。

当它们
以无尽的化身扭曲和闪烁时,您可以永远凝视着明亮的火焰。

但你到底在看什么?

火焰显然不是固体,

也不是液体。

与空气混合,它们
更像是一种气体,

但更明显——也更短暂。

在科学层面上,
火与气体不同,

因为气体可以
无限期地以相同的状态存在,

而火总是最终会熄灭。

一种误解是
火是等离子体,

这是物质的第四种状态,其中原子

被剥夺了电子。

与火一样,与
其他种类的物质不同,

等离子体
在地球上并不以稳定状态存在。

它们仅在气体暴露
于电场或过热

到数千
或数万度的温度时才会形成。

相比之下,木材和纸张等燃料的
燃烧温度

为几百度——远低于

通常
被认为是等离子的阈值。

因此,如果火不是固体、液体、气体

或等离子体,那会留下什么?

事实证明,火实际上
根本不重要。

相反,这是我们对
称为燃烧的化学反应的感官体验。

从某种意义上说,火就像树叶
在秋天变色

,果实成熟时的气味,

或者萤火虫闪烁的光芒。

所有这些

都是发生化学反应的感官线索。

火的不同之处在于
它同时吸引了我们的许多

感官,
创造了

我们期望
来自物理事物的那种生动体验。

燃烧

使用燃料、热量和氧气创造感官体验。

在篝火中,当原木被
加热到点火温度时,

它们的细胞壁会分解,

将糖和其他
分子释放到空气中。

然后这些分子
与空气中的氧气

反应生成二氧化碳和水。

与此同时,
原木中的任何积水都会

蒸发、膨胀、
使周围的木头破裂,

并伴随着令人满意的噼啪声逸出。

随着火的升温,燃烧产生的
二氧化碳和水蒸气会

膨胀。

现在它们的密度降低了,
它们在细化柱中上升。

重力导致这种膨胀和上升,
这使

火焰具有其特有的锥度。

没有重力,分子不会

因密度而分离,火焰的
形状也完全不同。

我们可以看到这一切,因为燃烧

也会产生光。

分子在加热时会发光,

而光的颜色

取决于分子的温度。

最热的火焰是白色或蓝色。

火中分子的类型

也会影响火焰的颜色。

例如,原木中任何未反应的
碳原子都会

形成小块煤烟,这些煤烟会

升到火焰中并发出

我们与篝火相关的橙黄色光。

铜、氯化钙

和氯化钾等物质可以在混合物中添加它们

自己的特征色调。

除了五颜六色的火焰,

火在燃烧时也会继续产生
热量。

这种热量通过

将燃料保持在或高于点火温度来维持火焰。

然而,最终,即使是最热的火也会

耗尽燃料或氧气。

然后,那些扭曲的火焰
发出最后的嘶嘶声

,随着一缕烟雾消失,

仿佛根本不存在。