How do schools of fish swim in harmony Nathan S. Jacobs

How do schools of fish swim in harmony?

And how do the tiny cells in your brain
give rise to the complex thoughts,

memories,

and consciousness that are you?

Oddly enough, those questions have
the same general answer:

emergence,

or the spontaneous creation of
sophisticated behaviors and functions

from large groups of simple elements.

Like many animals,
fish stick together in groups,

but that’s not just because
they enjoy each other’s company.

It’s a matter of survival.

Schools of fish exhibit
complex swarming behaviors

that help them evade hungry predators,

while a lone fish is quickly singled out
as easy prey.

So which brilliant fish leader
is the one in charge?

Actually, no one is,

and everyone is.

So what does that mean?

While the school of fish is elegantly
twisting, turning, and dodging sharks

in what looks
like deliberate coordination,

each individual fish is actually
just following two basic rules

that have nothing to do with the shark:

one, stay close, but not too close
to your neighbor,

and two, keep swimmming.

As individuals, the fish are focused on
the minutiae of these local interactions,

but if enough fish join the group,
something remarkable happens.

The movement of individual fish
is eclipsed by an entirely new entity:

the school, which has its own
unique set of behaviors.

The school isn’t controlled
by any single fish.

It simply emerges if you have enough fish
following the right set of local rules.

It’s like an accident that happens over
and over again,

allowing fish all across the ocean
to reliably avoid predation.

And it’s not just fish.

Emergence is a basic property of many
complex systems of interacting elements.

For example, the specific way in which
millions of grains of sand

collide and tumble over each other

almost always produces the same
basic pattern of ripples.

And when moisture freezes
in the atmosphere,

the specific binding properties
of water molecules

reliably produce radiating lattices
that form into beautiful snowflakes.

What makes emergence so complex

is that you can’t understand it
by simply taking it apart,

like the engine of a car.

Taking things apart is a good first step
to understanding a complex system.

But if you reduce a school of fish
to individuals,

it loses the ability to evade predators,

and there’s nothing left to study.

And if you reduce the brain
to individual neurons,

you’re left with something that is
notoriously unreliable,

and nothing like how we think and behave,

at least most of the time.

Regardless, whatever you’re thinking about
right now

isn’t reliant on a single neuron
lodged in the corner of your brain.

Rather, the mind emerges from
the collective activities

of many, many neurons.

There are billions of neurons
in the human brain,

and trillions of connections between
all those neurons.

When you turn such a complicated
system like that on,

it could behave in all sorts
of weird ways, but it doesn’t.

The neurons in our brain follow
simple rules, just like the fish,

so that as a group, their activity
self-organizes into reliable patterns

that let you do things
like recognize faces,

successfully repeat the same task
over and over again,

and keep all those silly little habits
that everyone likes about you.

So, what are the simple rules
when it comes to the brain?

The basic function of each neuron
in the brain

is to either excite or inhibit
other neurons.

If you connect a few neurons together
into a simple circuit,

you can generate rhythmic patterns
of activity,

feedback loops that ramp up
or shut down a signal,

coincidence detectors,

and disinhibition,

where two inhibitory neurons
can actually activate another neuron

by removing inhibitory brakes.

As more and more neurons are connected,

increasingly complex patterns
of activity emerge from the network.

Soon, so many neurons are interacting
in so many different ways at once

that the system becomes chaotic.

The trajectory of the network’s activity
cannot be easily explained

by the simple local circuits
described earlier.

And yet, from this chaos,
patterns can emerge,

and then emerge again and again
in a reproducible manner.

At some point, these emergent
patterns of activity

become sufficiently complex,

and curious to begin studying
their own biological origins,

not to mention emergence.

And what we found in emergent phenomena
at vastly different scales

is that same remarkable
characteristic as the fish displayed:

That emergence doesn’t require
someone or something to be in charge.

If the right rules are in place,

and some basic conditions are met,

a complex system will fall into
the same habits over and over again,

turning chaos into order.

That’s true in the molecular pandemonium
that lets your cells function,

the tangled thicket of neurons
that produces your thoughts and identity,

your network of friends and family,

all the way up to the structures and
economies of our cities across the planet.

鱼群如何和谐地游泳?

你大脑中的微小细胞是如何
产生复杂的思想、

记忆

和意识的?

奇怪的是,这些问题
都有相同的普遍答案:

涌现,

或者从大量简单元素中自发地创造出
复杂的行为和功能

像许多动物一样,
鱼成群结队地聚在一起,

但这不仅仅是因为
它们喜欢彼此的陪伴。

这是一个生存问题。

鱼群表现出
复杂的群集行为

,帮助它们躲避饥饿的捕食者,

而一条孤独的鱼很快就会被挑选出来
作为容易捕食的猎物。

那么到底是哪位出色的鱼
首领当家作主呢?

事实上,没有人是

,每个人都是。

那是什么意思?

虽然鱼群优雅地
扭动、转身和躲避鲨鱼

,看起来
像是刻意协调,但

每条鱼实际上
只是遵循

与鲨鱼无关的两条基本规则:

第一,靠近,但不要太
靠近 你的邻居,

还有两个,继续游泳。

作为个体,鱼专注于
这些局部互动的细节,

但如果有足够多的鱼加入这个群体,
就会发生一些非凡的事情。

个体鱼的运动
被一个全新的实体所掩盖

:鱼群,它有自己
独特的行为集。

学校
不受任何一条鱼的控制。

如果你有足够的鱼
遵循正确的当地规则,它就会出现。

这就像一次又一次发生的事故,

让大洋彼岸的鱼
能够可靠地避免捕食。

这不仅仅是鱼。

出现是许多
相互作用元素的复杂系统的基本属性。

例如,
数以百万计的沙粒

相互碰撞和翻滚的特定方式

几乎总是产生相同的
基本波纹图案。


大气中

的水分结冰时,水分子的特殊结合特性

可靠地产生辐射晶格
,形成美丽的雪花。

使涌现如此复杂的原因

在于,您无法
通过简单地将其拆开来理解它,

就像汽车的发动机一样。

拆开事物是
理解复杂系统的良好第一步。

但是如果你把一群鱼简化
为个体,

它就失去了躲避捕食者的能力,

也就没有什么可研究的了。

如果你把大脑简化
为单个神经元,

你就会得到一些
众所周知的不可靠

的东西,至少在大多数情况下,这和我们的思维和行为方式完全

不同。

无论如何,无论你现在在想什么,

都不依赖于
你大脑角落的单个神经元。

相反,思想是从

许多、许多神经元的集体活动中产生的。 人脑中

有数十亿个神经元

所有这些神经元之间有数万亿个连接。

当你打开这样一个复杂的
系统时,

它可能会以
各种奇怪的方式运行,但事实并非如此。

我们大脑中的神经元遵循
简单的规则,就像鱼一样,

因此作为一个群体,它们的活动
自组织成可靠的模式

,让你可以做
诸如识别面孔之类的事情,

成功地一遍又一遍地重复相同的任务

并保持所有
每个人都喜欢你的那些愚蠢的小习惯。

那么,关于大脑的简单规则
是什么? 大脑

中每个神经元的基本功能

是激发或抑制
其他神经元。

如果你将几个神经元连接
到一个简单的电路中,

你可以产生有节奏
的活动模式、

增加
或关闭信号的反馈回路、

巧合检测器

和去抑制,

其中两个抑制性神经元
实际上可以

通过消除抑制性制动器来激活另一个神经元 .

随着越来越多的神经元被连接起来,

网络中出现了越来越复杂的活动模式。

很快,如此多的神经元同时
以如此多不同的方式相互作用,

以至于系统变得混乱。

网络活动的轨迹
不能

简单地用前面描述的简单局部电路来解释

然而,从这种混乱中,
模式可以出现,

然后
以可重复的方式一次又一次地出现。

在某些时候,这些涌现
的活动模式

变得足够复杂,

并且好奇地开始研究
它们自己的生物学起源,

更不用说涌现了。

我们在不同尺度的涌现现象中发现了

与鱼所表现出的相同的显着特征:

这种涌现不需要
某人或某物负责。

如果规则到位

,一些基本条件得到满足,

一个复杂的系统就会
一次又一次地陷入相同的习惯,

把混乱变成秩序。


让你的细胞发挥功能的分子混乱

、产生你的思想和身份的错综复杂的神经元、

你的朋友和家人网络,

一直到
我们地球上城市的结构和经济时,情况都是如此。