Why are fish fishshaped Lauren Sallan

In tropical seas,

flying fish leap out of the water,

gliding for up to 200 meters
using wing-like fins,

before dipping back into the sea.

In the Indo-Pacific,

a hunting sailfish can reach speeds
of 110 kilometers per hour.

That’s 11 times faster than Olympic
swimming champion Michael Phelps.

It can then stick up its spiny dorsal fin
like a brake,

grinding to a dead halt, mid-swim.

Each of these physical feats is made
possible by a fish’s form,

which in most species is a smooth,
elongated body, fins, and a tail.

These features are shared across thousands
of fish species,

each introducing its own variations on
the theme to survive in unique habitats.

What makes these features so
commonplace in fish,

and what does it reveal about the more
than 33,000 fish species

that inhabit earth’s rivers,
lakes, and seas?

Fish can be split into two main groups,

according to the type
of motion they favor.

The first is body
and caudal fin driven motion,

and most fish species, about 85%,
fall into this group.

Here, the body and tail
are the primary propelling forces,

with fins mainly playing
a stabilizing and steering role.

This configuration suits
many open-water species,

which need speed, thrust and control for
constant, efficient swimming.

Eels lie at one extreme of this group.

Known as anguilliform swimmers,

their entire bodies undulate to generate
a wave-like motion.

Compared to anguilliform fish,

species like salmon and trout,
known as subcarangiforms,

use about two-thirds of their body mass
to generate motion,

while carangiform swimmers,
such as mackerel,

only use about a third.

Typically, the less of its mass a fish
uses to generate motion,

the more streamlined its shape.

At the other end of the spectrum from eels
are ostraciiform species like boxfish,

and thunniform swimmers like tuna.

In these fish, the tails,
also known as caudal fins, do the work.

A tuna’s tail is attached by tendons
to multiple muscles in its body.

It powers the body like an engine,

forcefully catapulting
the bullet-like fish

to speeds up to 69 kilometers per hour.

The second major fish group relies
on median and paired fin motion,

meaning they’re propelled through the
water predominantly by their fins.

Fins allow fine-tuned movement
at slow speeds,

so this propulsion
is typically found in fish

that have to navigate complex habitats.

Bottom-dwelling fishes, like rays,
fall into this group;

using their huge pectoral fins, they can
lift themselves swiftly off the sea floor.

That conveniently allows them
to inhabit shallow seas

without being buffeted about by waves.

Similarly, shallow-water flatfish
use their entire bodies

as one big fin to hoist
themselves up off the sand.

Ocean sunfish lack tails,

so they move around slowly by beating
their wing-like median fins instead.

Similar movements are shared
by many reef species,

like the queen angelfish,

surgeonfish,

and wrasse.

Their focus on fins has taken
the demand off their bodies,

many of which have consequently
evolved into unusual and inventive shapes.

There are fishes within both groups
that seem to be outliers.

But if you look closer,

you’ll notice that these
common traits are disguised.

Seahorses, for instance, don’t appear
fish-shaped in any conventional way,

yet they use their flexible
dorsal fins as makeshift tails.

A pufferfish may occasionally
look more like a lethal balloon,

but if it needs to swim rapidly,
it’ll retract its spines.

Handfish look like they have legs,

but really these limb-like
structures are fins,

modified to help them
amble across the sea floor.

For fish, motion underpins survival,

so it’s become a huge evolutionary
driver of form.

The widespread features of fish
have been maintained

across tens of thousands of fish species,

not to mention other
ocean-dwelling animals,

like penguins,

dolphins,

sea slugs,

and squids.

And that’s precisely because
they’ve proven so successful.

在热带海域,

飞鱼跃出水面,

使用翼状鳍滑翔 200 米,

然后再潜入海中。

在印太地区

,狩猎旗鱼的速度可以达到
每小时 110 公里。

这比奥运会
游泳冠军迈克尔菲尔普斯快 11 倍。

然后它可以像刹车一样竖起它多刺的背鳍

,在游到一半的时候突然停下来。

这些身体上的每一项壮举都是
由鱼的形态实现的

,在大多数物种中
,鱼的身体是光滑、细长的身体、鳍和尾巴。

这些特征在数千
种鱼类中共有,

每一种都在主题上引入了自己的变化,
以便在独特的栖息地中生存。

是什么让这些特征
在鱼类

中如此普遍?它揭示

了栖息在地球河流、
湖泊和海洋中的 33,000 多种鱼类的什么?

根据鱼喜欢的运动类型,鱼可以分为两大类

首先是身体
和尾鳍驱动的运动

,大多数鱼类,大约 85%,
属于这一组。

在这里,身体和尾部
是主要的推进力

,鳍主要
起到稳定和转向的作用。

这种配置适合
许多开放水域物种,

它们需要速度、推力和控制以实现
持续、高效的游泳。

鳗鱼位于这一群体的一个极端。

被称为anguilliform游泳者,

他们的整个身体都会波动以
产生波浪状的运动。

与鳗鲡类鱼类相比,

鲑鱼和鳟鱼等
被称为亚鲫鱼的物种

使用约三分之二的体重
来产生运动,


鲭鱼等鲭鱼等鲭鱼

仅使用约三分之一。

通常,鱼
用来产生运动的质量越少,

它的形状就越流线型。

在鳗鱼光谱的另一端是
像箱鱼这样的鸵鸟形物种,

以及像金枪鱼这样的鲔形游泳者。

在这些鱼中,尾巴,
也称为尾鳍,起到了作用。

金枪鱼的尾巴通过肌腱连接
到身体的多个肌肉上。

它像发动机一样为身体提供动力,

有力地
将子弹状的鱼弹射

到每小时 69 公里的速度。

第二个主要的鱼群依赖
于中间和成对的鳍运动,

这意味着它们
主要是通过它们的鳍在水中推动的。

鳍允许以低速进行微调运动

因此这种推进
力通常存在于

必须在复杂栖息地中航行的鱼类中。

底栖鱼类,如鳐鱼,
属于这一类;

使用它们巨大的胸鳍,它们可以
迅速将自己从海底升起。

这使它们
可以方便地居住在浅海

而不会受到海浪的冲击。

同样,浅水比目鱼
将整个身体

作为一个大鳍将
自己从沙滩上抬起。

海洋翻车鱼没有尾巴,

所以它们通过敲打
它们的翼状中鳍来缓慢移动。

许多珊瑚礁物种都有类似的运动,

如神仙

鱼、刺尾鱼

和濑鱼。

他们对鳍的关注已经
消除了对身体的需求,

其中许多因此
演变成不寻常且具有创造性的形状。

两组中都有一些鱼
似乎是异常值。

但如果你仔细观察,

你会发现这些
共同特征是伪装的。

例如,海马不会
以任何传统方式呈现鱼形,

但它们使用灵活的
背鳍作为临时尾巴。

河豚有时可能
看起来更像一个致命的气球,

但如果它需要快速游泳,
它会缩回它的刺。

手鱼看起来像是有腿,

但实际上这些类似肢体的
结构是鳍,

经过修改以帮助
它们在海底漫步。

对于鱼来说,运动是生存的基础,

因此它已成为形态进化的巨大
驱动力。

鱼类的广泛特征在数以万计的鱼类
中得到了保持

更不用说其他
海洋动物,

如企鹅、

海豚、

海蛞蝓

和鱿鱼。

这正是因为
他们已经证明非常成功。