Folding waynew origami Robert Lang

my talk is flapping birds and Space

Telescope’s

and you would think that should have

nothing to do with one another but I

hope by the end of these 18 minutes

you’ll see a little bit of a relation it

ties to origami so let me start what is

origami most people think they know what

origami is it’s this flapping birds toys

cootie catchers that sort of thing and

that is what origami used to be but it’s

become something else it’s become an art

form a form of sculpture

the common theme what makes it origami

is folding is how we create the form now

it’s very old this is a plate from 1797

shows these women playing with these

toys if you look close it’s this shape

called a crane every Japanese kid learns

how to fold that crane so this art has

been around for hundreds of years and

you would think something that’s been

around that long so restrictive folding

only everything that could be done has

been done a long time ago and that might

have been the case but in the 20th

century a Japanese folder named

Yoshizawa came along and he created tens

of thousands of new designs but even

more importantly he created a language a

way we could communicate a code of dots

dashes and arrows harkening back to

susan Blackmore’s talk we now have a

means of transmitting information with

heredity and selection and we know where

that leads and where it has led in

origami is to things like this this is

an origami figure one sheet no cuts

folding only hundreds of folds this too

is origami and this shows where we’ve

gone in the modern world naturalism

detail you can get horns antlers even if

you look close cloven hooves and it

raises a question what changed what and

what changed is something you might not

have expected in an art which is math

that is people applied mathematical

principles to to the art to discover the

underlying laws and that leads to a very

powerful tool the secret to productivity

in so many fields and in origami is

letting dead

people do your work for you because what

you can do is take your problem and turn

it into a problem that someone else’s

has solved and use their solutions and I

want to tell you how we did that in

origami origami revolves around crease

patterns a crease pattern shown here is

the underlying blueprint for an origami

figure and you can’t just draw them

arbitrarily they have to obey four

simple laws and they’re very simple easy

to understand the first law is to color

ability you can color any crease pattern

with just two colors without ever having

the same color meeting the directions of

the folds at any vertex the number of

mountain folds the number of Valley

folds always differs by two two more or

two less nothing else if you look at the

angles around a fold you find that if

you number the angles in a circle all

the even-numbered angles add up to a

straight line all the odd-numbered

angles add up to a straight line and if

you look at how the layers stack you’ll

find that no matter how you stack folds

and sheets a sheet can never penetrate a

fold so that’s four simple laws that’s

all you need in origami all of origami

comes from that you’d think can four

simple laws give rise to that kind of

complexity but indeed the laws of

quantum mechanics can be written down on

a napkin and yet they govern all of

chemistry all of life all of history if

we obey these laws we can do amazing

things so an origami to obey these laws

we can take simple patterns like this

repeating pattern of folds called

textures and by itself it’s nothing

but if we follow the laws of origami we

can put these patterns into another fold

that itself might be something very very

simple but when we put it together we

get something a little different this

fish 400 scales again it is one uncut

square only folding and if you don’t

want to fold 400 scales you can back off

and just do a few things and add plates

to the back of a turtle or toes or you

can ramp up and go up to 50 stars on a

flag with 13 stripes and if you want to

go really crazy a thousand scales on a

rattlesnake and this guy’s on display

downstairs

look if you get a chance the most

powerful tools in origami have related

to how we get parts of creatures and I

can put it in this simple equation we

take an idea combine it with a square

and you get an origami figure what

matters is what we mean by those symbols

and you might say can you really be that

specific I mean a stag beetle it’s got

two points for jaws that’s got antennae

can you be that specific in the detail

and yeah you really can so how do we do

that well we break it down into a few

smaller steps so let me stretch out that

equation

I start with my idea I abstract it

what’s the most abstract form it’s a

stick figure and from that stick figure

I somehow have to get to a folded shape

that has a part for every bit of the

subject a flap for every leg and then

once I have that folded shape that we

call the base you can make the legs

narrower you can bend them you can turn

it into the finished shape now the first

step pretty easy

take an idea draw stick figure the last

step is not so hard but that middle step

going from the abstract description to

the folded shape that’s hard but that’s

the place where the mathematical ideas

can get us over the hump I’m going to

show you all how to do that so you can

go out of here and fold something but

we’re going to start small this base has

a lot of flaps in it we’re going to

learn how to make one flap how would you

make a single flap take a square fold it

in half fold it in half fold it again

till it gets long and narrow and then

we’ll say the end of that that’s a flap

I could use that for a leg and arm

anything like that

what paper went into that flap well if I

unfold it and go back to the crease

pattern you can see that the upper left

corner of that shape is the paper that

went into the flap so that’s the flap

and all the rest of the papers leftover

I can use it for something else well

there’s other ways of making a flap

there’s other dimensions for flaps if I

make the flap skinnier I can use a bit

less paper if I make the flap as skinny

as possible I get to the limit of the

minimum amount of paper needed and you

can see there it needs a quarter circle

of paper to make a flap there’s other

ways of making a flaps if

put the flap on the edge it uses a half

circle of paper and if I make the flap

from the middle it uses a full circle so

no matter how I make a flap it needs

some part of a circular region of paper

so now we’re ready to scale up what if I

want to make something that has a lot of

flaps what do I need I need a lot of

circles and in the 1990s origami artist

discovered these principles and realize

we can make arbitrarily complicated

figures just by packing circles and

here’s where the dead people start to

help us out because lots of people have

this have studied the problem of packing

circles I can rely on that vast history

of mathematicians and artists looking at

discs packings and arrangements and I

can use those patterns now to create

origami shapes so we figured out these

rules whereby you pack circles you you

decorate the patterns of circles with

lines according to more rules that gives

you the folds those folds fold into a

base you shape the base you get a folded

shape in this case a cockroach and it’s

so simple it’s so simple that a computer

could do it and you say well you know

how simple is that but computers you

need to be able to describe things in

very basic terms and with this we could

so I wrote a computer program a bunch of

years ago called Tree Maker and you can

download it from my website it’s free

runs on all the major platforms even

windows

and you just draw a stick figure and it

calculates the crease pattern it does

the circle packing calculates the crease

pattern and if you use that stick figure

that I just showed which can kind of

tell it’s a deer it’s got a antlers

you’ll get this crease pattern and if

you take this crease pattern you fold on

the dotted lines you’ll get a base that

you can then shape into a deer with

exactly the crease pattern that you

wanted and if you want a different deer

it’s not a white-tailed deer but you

want a mule deer or an elk you change

the packing and you can do an elk or you

could do a moose or really any other

kind of deer these techniques

revolutionize this art we found we could

do insects spiders which are clothes

things with legs things with legs and

wings things with legs and antennae and

a folding a single praying mantis from a

single uncut square wasn’t interesting

enough then you could do two praying

mantises from a single uncut square

she’s eating him I call it snack time

and you can do more than just insects

this you can you can put details toes

and claws grizzly bear has claws this

tree frog has toes actually lots of

people in origami now put toes into

their models toes have become an origami

meme because everyone’s doing it you can

you can make multiple subjects so these

are a couple instrumentalists the guitar

player from a single square the bass

player from a single square and if you

say well but guitar bass that’s not so

hot do a little more complicated

instrument well then you could do an

organ and what this is allowed is the

creation of origami on demand I’m so now

people can say I want exactly this and

this and this and you can go out and

fold it and sometimes you create high

art and sometimes you pay the bills by

doing some commercial work but I want to

show you some examples everything you’ll

see here except the car is origami

density she got a date

so they were Emily

so it was a little hasty so they want to

see what she

sorry what though she was do you the

2006 Mitsubishi Endeavor was a powerful

3.8 liter v6 and available all-wheel

drive a mythic combination of beauty and

beast Mitsubishi driven is thrill just

to say this really was folded paper

computers made things move but these

were all real folded objects that we

made and we can use this not just for

visuals but it turns out to be useful

even in the real world surprisingly

origami and the structures that we’ve

developed an origami turn out to have

applications in medicine and science in

space in the body consumer electronics

and more and I want to show you some of

these examples one of the earliest was

this pattern this folded pattern studied

by Cory ami or a Japanese engineer

studied a folding pattern realized this

could fold down into an extremely

compact package that had a very simple

opening and closing structure and he

used it to design this solar array it’s

an artist rendition but it flew in a

Japanese telescope in 1995 now there is

actually a little origami in the James

Webb Space Telescope but it’s very

simple the telescope is going up in

space it unfolds in two places it folds

in thirds it’s a very simple pattern you

wouldn’t even call that origami they

certainly didn’t need to talk to origami

artists but if you want to go higher and

go larger than this then you might need

some origami engineers at Lawrence

Livermore National Lab had an idea for a

telescope much larger they called it the

eye glass the design called for

geosynchronous orbit 25,000 miles up a

hundred meter diameter lens so imagine a

lens the size of a football field

there were two groups of people who are

interested in this planetary scientists

who want to look up and then other

people who wanted to look down the

weather you look up or look down how you

get it up in space you got to get it up

there in a rocket and Rockets are small

so you have to make it smaller how do

you make a large sheet of glass smaller

well about the only way is to fold it up

somehow so you have to do something like

this this was a

small model folded lens you divide up

the panels you had flexures but this

patterns not going to work to get

something a hundred meters down to a few

meters so the Livermore engineers

wanting to make use of the work of dead

people or perhaps live origamist s–

said let’s see if someone else is doing

this sort of thing so they looked into

the origami community we got in touch

with them and I started working with him

and we developed a pattern together that

scales to arbitrarily large size but

that allows any flat ring or disk to

fold down into a very neat compact

cylinder and they adopted that for their

first generation which was not a hundred

meters was a five meter but this is a

five meter telescope as about a quarter

mile focal length and it works perfectly

on its test range and it indeed folds up

into a neat little bundle now there is

other origami in space Japan aerospace

agency flew a solar sail and you can see

here that the sail expands out you can

still see the fold lines the problem

that’s being solved here is something

that needs to be big and sheet like at

its destination but needs to be small

for the journey and that works whether

you’re going into space or whether

you’re just going into a body and this

example is the latter this is a heart

stent developed by Zhang Yu at Oxford

University

it holds open a blocked artery when it

gets to its destination but it needs to

be much smaller for the trip there

through your blood vessels and this stem

folds down using an origami pattern

based on a model called the water bomb

base airbag designers also have the

problem of getting flat sheets into a

small space and they want to do their

design by simulation so they need to

figure out how in a computer to flatten

an airbag and the algorithms that we

developed to do insects turn out to be

the solution for airbags to do their

simulation and so they can do a

simulation like this those are the

origami creases forming and now you can

see the airbag inflate and find out does

it work and that leads to a really

interesting idea you know where did

these

come from well the heart stent came from

that little blow-up box that you might

have learned in elementary school it’s

the same pattern called the water bomb

base the air bag flattening algorithm

came from all the developments of circle

packing and the mathematical theory that

was really developed just to create

insects things with legs the thing is

that this often happens in math and the

science when you get math involved

problems that you solve for aesthetic

value only just or to create something

beautiful turn around and turn out to

have an application in the real world

and as weird and surprising as it may

sound origami

may someday even save a life thanks

我的谈话是拍打鸟和太空

望远镜的

,你会认为这应该

与彼此无关,但我

希望在这 18 分钟结束时,

你会看到它

与折纸有一点关系,所以让我开始吧 是

折纸 大多数人认为他们知道什么是

折纸 它是这种拍动的小鸟玩具

捕鸟器之类的东西,

这就是折纸曾经的样子,但它已经

变成了另一种东西 它已经成为一种艺术

形式 一种雕塑形式

共同的主题 是什么使它成为折纸

折叠是我们创造这种形式的方式 现在

它已经很古老了 这是一个 1797 年的盘子

展示了这些女人在玩这些

玩具 如果你仔细看 它是这种形状

叫做起重机 每个日本孩子都学会了

如何折叠起重机 所以这种艺术

一直存在 几百年来,

你会认为一些事情已经

存在了那么久,所以限制性折叠

只有所有可以做的

事情在很久以前就已经完成了,可能

情况就是这样,但在 20 世纪

世纪以来,一个名叫 Yoshizawa 的日本文件夹

出现了,他创造了

数以万计的新设计,但

更重要的是,他创造了一种语言,

一种我们可以交流点划线和箭头代码的方式,这

让人想起

susan Blackmore 的谈话,我们现在有了

一种传播方式 具有

遗传和选择的信息,我们知道

折纸的方向和方向是这样的,这是

一个折纸图,一张没有切口,

只有数百折,这

也是折纸,这显示了我们已经

进入的地方 现代世界自然主义的

细节,即使你近距离观察,你也可以得到角

鹿角,它

提出了一个问题,什么改变了什么,

什么改变是你

在数学艺术中可能没有预料到的,

这是人们将数学

原理应用于 发现

基本规律的艺术,这导致了一个非常

强大的工具

在如此多的领域和折纸中生产力的秘诀就是

让死去的人

请为你做你的工作,因为

你能做的就是把你

的问题变成别人

已经解决的问题并使用他们的解决方案,我

想告诉你我们是如何在折纸中做到这一点的

折纸围绕折痕

图案 折痕图案 此处显示的

是折纸图形的基本蓝图

,您不能随意绘制它们,

它们必须遵守四个

简单的定律,而且它们非常简单

容易理解第一定律是着色

能力,您可以用任何折痕图案

着色 两种颜色,但从来

没有相同的颜色

在任何顶点处满足褶皱的方向

山褶皱的数量山谷褶皱的数量

总是相差两个多

或少两个,如果你看一下

折叠周围的角度,你会发现 如果

你给圆圈中的角度编号,所有

的偶数角度加起来是一条

直线,所有的奇数

角度加起来都是一条直线,如果

你看看层是如何堆叠的,你会

发现 无论你如何堆叠折叠

和床单,一张床单永远无法穿透

折叠所以这就是

折纸中你所需要的四个简单法则所有折纸

都来自你认为四个

简单的法则可以产生那种

复杂性,但确实

量子力学定律可以写

在餐巾纸上,但它们支配着所有的

化学,所有的生命,所有的历史,如果

我们遵守这些定律,我们可以做出令人惊奇的

事情,所以遵循这些定律的折纸,

我们可以采用像这样

重复的简单模式 褶皱的图案称为

纹理,它本身没什么,

但如果我们遵循折纸法则,我们

可以将这些图案放入另一个褶皱

再一次,它是一个未切割的

正方形,只能折叠,如果你

不想折叠 400 个鳞片,你可以退后一步

,做一些事情,然后

在龟背或脚趾上添加盘子,或者你

可以爬起来 在有 13 条条纹的旗帜上最多可以有 50 颗星

,如果你

想在响尾蛇上疯狂一千个鳞片,

如果你有机会的话,看看楼下展示的这个家伙

,折纸中最强大的工具与

我们如何获得零件有关 生物,我

可以把它放在这个简单的等式中,我们

把它与正方形结合起来

,你会得到一个折纸图

重要的是我们所说的那些符号的意思

,你可能会说你真的能那么具体吗?

我的意思是一只锹形甲虫

下巴有两点 有触角

你能不能在细节上那么具体

我把它抽象出来

什么是最抽象的形式 它是一个

简笔画 并且从那个简笔画中

我必须以某种方式得到一个折叠的形状

,它对主体的每一部分都有一个部分

,每条腿都有一个襟翼,然后

一旦我有了折叠的形状 我们

称 他的底座 你可以让腿

变窄 你可以弯曲它们 你可以把

它变成成品 现在

第一步很

容易 想出个主意 画简笔画 最后

一步并不难,但中间

一步从抽象描述

到 折叠的形状很难,但这是

数学思想

可以让我们克服困难

的地方 里面

有很多襟翼 我们将

学习如何制作一个襟翼 你如何

制作一个襟翼 将方形对折

对折 再次对折

直到它变长变窄 然后

我们将 说那是一个襟翼的末端

我可以用它来做一条腿和手臂

任何类似的

东西 如果我展开它并回到折痕图案,纸会很好地进入那个襟翼

你可以看到

那个形状的左上角是 进入翻盖的纸张,

这就是翻盖

和所有 t 他剩下剩下的纸

我可以用它做别的东西

还有其他方法可以制作翻盖

如果我

将翻盖做得更薄,翻盖还有其他尺寸

如果我将翻盖做得尽可能薄,我可以使用更少的纸张

我得到 到

所需的最小纸张数量的限制,你

可以看到它需要四分之一圈

的纸来制作一个襟翼 如果

将襟翼放在边缘,它会使用半

圈纸,如果我

从中间制作襟翼它使用一个完整的圆圈所以

无论我如何制作襟翼它都需要

圆形纸区域的一部分

所以现在我们已经准备好扩大规模如果我

想做一些有很多的东西

我需要什么我需要很多

圈子,在 1990 年代折纸艺术家

发现了这些原则并意识到

我们可以通过包装圈子来制作任意复杂的

图形,

这就是死者开始

帮助我们的地方,因为很多人

都有这个 研究了亲 包装

圈的问题我可以依靠

数学家和艺术家研究

光盘包装和排列的悠久历史,我

现在可以使用这些图案来创建

折纸形状,所以我们想出了这些

规则,你可以用这些规则来包装圆圈你

装饰圆圈的图案

根据更多规则的线条,给

你褶皱那些褶皱折叠成一个

底座你塑造底座你得到一个折叠的

形状在这种情况下一只蟑螂它是

如此简单它是如此简单以至于电脑

可以做到你说你知道

怎么做 很简单,但是计算机你

需要能够用

非常基本的术语来描述事物,有了这个我们可以,

所以几年前我写了一个名为 Tree Maker 的计算机程序

,你可以

从我的网站下载它,它

可以在所有计算机上免费运行 主要平台甚至

窗户

,您只需绘制一个简笔画,它会

计算折痕图案,它

会计算圆形包装计算折痕

图案,如果您

使用我 j 的简笔画 美国科技大学展示了它可以

看出它是一只鹿它有一个鹿角

你会得到这个折痕图案如果

你采用这种折痕图案

你会在虚线上折叠你会得到一个底座,

然后你可以将它完全塑造成一只鹿

你想要的折痕图案

,如果你想要不同的鹿,

它不是白尾鹿,但你

想要一头骡鹿或麋鹿,你

改变包装,你可以做一只麋鹿,或者你

可以做一只驼鹿或任何其他

种类 鹿 这些技术

彻底改变了这门艺术 我们发现我们可以

做昆虫 蜘蛛

有腿的衣服 有腿和

翅膀的东西 有腿和触角的东西 用

一个未切割的正方形折叠一只螳螂 不够有趣

,然后你可以

在一个未切割的正方形上做两只螳螂

她在吃他 我称之为零食

时间 你可以做的不仅仅是昆虫

这个你可以做更多细节 脚趾

和爪子 灰熊有爪子 这种

树蛙有脚趾 实际上很多

折纸中的人们现在将脚趾放入

他们的模型中脚趾已成为折纸

模因,因为每个人都在这样做,

您可以制作多个主题,因此这些

是一对乐器演奏家,吉他

手来自一个方格,

贝斯手来自一个方格,如果你

说 好吧,但是不太

热的吉他贝司做一个更复杂的

乐器,然后你可以做一个

风琴,这是允许的就是

按需创建折纸我所以现在

人们可以说我想要这个,

这个和这个和 你可以出去把

它折叠起来,有时你创造高雅的

艺术,有时你通过

做一些商业工作来支付账单,但我想向

你展示一些例子,你会

在这里看到的一切,除了汽车是折纸

密度,她有约会

所以他们 是艾米丽,

所以有点仓促,所以他们想

看看她有

什么遗憾,尽管她是

2006 年的三菱奋进号是一款强大的

3.8 升 v6 发动机和可用的全轮

驱动,这是一个神话般的组合

美女与野兽 Mitsubishi

只是说这真的是折叠的纸

电脑让物体移动,但这些

都是我们制作的真实折叠物体

,我们不仅可以将其用于

视觉效果,而且事实证明

即使在现实世界中也很有用 令人惊讶的

折纸和我们

开发的折纸结构

最终在医学和科学

领域中的身体消费电子产品

等领域得到了应用,我想向您展示其中的

一些示例,最早的一个是

这种模式这种折叠模式

由 Cory ami 或一位日本工程师

研究 研究了一种折叠模式,他意识到这

可以折叠成一个非常

紧凑的包装,具有非常简单的

开合结构,他

用它来设计这个太阳能电池阵列。

1995 年的望远镜现在

在詹姆斯韦伯太空望远镜中实际上有一个小折纸,

但它非常

简单,望远镜在

太空中上升它展开 ds 在两个地方它折叠

成三分之一这是一个非常简单的模式你

甚至不会称之为折纸他们

当然不需要与折纸

艺术家交谈但是如果你想走得更高并且

比这更大那么你可能需要

一些折纸

劳伦斯利弗莫尔国家实验室的工程师有一个更大的望远镜的想法,

他们称之为

眼镜 该设计要求

地球同步轨道 25,000 英里,直径为

100 米,因此想象

一个足球场大小的镜头

有两组人

对这个行星感兴趣的

人 想要仰望的科学家,然后其他

想看

天气的人 你抬头或低头 你是如何

在太空中升起的 你必须用火箭把它升到

那里 火箭很小

所以你必须让它更小

你如何让一大片玻璃更

小唯一的方法就是以某种方式将它折叠起来

所以你必须做这样的事情

这是一个

你分割的小型折叠镜头

你有弯曲的面板,但这种

模式无法将

一百米的东西缩小到

几米,所以利弗莫尔工程师

想要利用

死人或活的折纸师的工作-

说让我们看看是否有其他人 正在做

这种事情,所以他们调查

了我们与他们联系的折纸社区

,我开始和他

一起工作,我们一起开发了一种可以

缩放到任意大尺寸的图案,但

它允许任何扁平的圆环或圆盘

折叠成一个 非常简洁紧凑的

圆柱体,他们采用了

第一代不是一百米

五米望远镜,但这是一个五米的望远镜,焦距约为四分之一

英里,它

在其测试范围内完美运行,它确实可以折叠

成 一个整洁的小包 现在

太空中还有其他折纸 日本航空航天

局驾驶太阳帆 你可以

在这里看到帆展开了 你

仍然可以看到折叠线 问题

是 在这里要解决的问题是

在目的地需要大而薄的东西,

在旅途中需要小,

无论你是要进入太空还是

只是进入一个身体,这个

例子都是后者 这是

牛津大学的张宇开发的心脏支架,

当它到达目的地时,它会打开一条阻塞的动脉,

但它

需要小得多,以便

通过你的血管到达那里,并且这个茎

使用基于折纸图案的折纸图案向下折叠

一个名为水弹式

安全气囊的模型设计师也有

将平板放入

狭小空间的问题,他们希望

通过模拟进行设计,因此他们需要

弄清楚如何在计算机中将

安全气囊压平以及我们开发的算法

做昆虫原来是

安全气囊进行模拟的解决方案

,所以他们可以做这样的

模拟那些是

折纸折痕形成,现在你可以

看到安全气囊膨胀和 找出

它是否有效,这会导致一个非常

有趣的想法,你知道

这些

是从哪里来的,心脏支架来自

那个你可能

在小学就学过的小爆炸盒,它

与称为水弹基地的模式相同

气囊展平算法

来自于圆形

包装的所有发展和数学理论,这些理论

的真正发展只是为了创造

有腿的昆虫事物,当你遇到涉及数学的问题时

,这经常发生在数学和

科学中

,你解决美学问题

只重视或创造一些

美丽的东西转身并

在现实世界中得到应用,

听起来很奇怪和令人惊讶,

折纸有朝一日甚至可以挽救生命,谢谢