Pamela Ronald The case for engineering our food

I am a plant geneticist.

I study genes that make plants
resistant to disease

and tolerant of stress.

In recent years,

millions of people around the world
have come to believe

that there’s something sinister
about genetic modification.

Today, I am going to provide
a different perspective.

First, let me introduce my husband, Raoul.

He’s an organic farmer.

On his farm, he plants
a variety of different crops.

This is one of the many
ecological farming practices

he uses to keep his farm healthy.

Imagine some of the reactions we get:

“Really? An organic farmer
and a plant geneticist?

Can you agree on anything?”

Well, we can, and it’s not difficult,
because we have the same goal.

We want to help nourish
the growing population

without further destroying
the environment.

I believe this is the greatest
challenge of our time.

Now, genetic modification is not new;

virtually everything we eat
has been genetically modified

in some manner.

Let me give you a few examples.

On the left is an image

of the ancient ancestor of modern corn.

You see a single roll of grain
that’s covered in a hard case.

Unless you have a hammer,

teosinte isn’t good for making tortillas.

Now, take a look at
the ancient ancestor of banana.

You can see the large seeds.

And unappetizing brussel sprouts,

and eggplant, so beautiful.

Now, to create these varieties,

breeders have used many different
genetic techniques over the years.

Some of them are quite creative,

like mixing two different species together

using a process called grafting

to create this variety
that’s half tomato and half potato.

Breeders have also used
other types of genetic techniques,

such as random mutagenesis,

which induces uncharacterized mutations

into the plants.

The rice in the cereal
that many of us fed our babies

was developed using this approach.

Now, today, breeders have
even more options to choose from.

Some of them are extraordinarily precise.

I want to give you a couple examples
from my own work.

I work on rice, which is a staple food
for more than half the world’s people.

Each year, 40 percent
of the potential harvest

is lost to pest and disease.

For this reason,
farmers plant rice varieties

that carry genes for resistance.

This approach has been used
for nearly 100 years.

Yet, when I started graduate school,

no one knew what these genes were.

It wasn’t until the 1990s
that scientists finally uncovered

the genetic basis of resistance.

In my laboratory, we isolated a gene
for immunity to a very serious

bacterial disease in Asia and Africa.

We found we could engineer the gene
into a conventional rice variety

that’s normally susceptible,

and you can see the two leaves
on the bottom here

are highly resistant to infection.

Now, the same month
that my laboratory published

our discovery on the rice immunity gene,

my friend and colleague Dave Mackill
stopped by my office.

He said, “Seventy million rice farmers
are having trouble growing rice.”

That’s because their fields are flooded,

and these rice farmers are living
on less than two dollars a day.

Although rice grows well
in standing water,

most rice varieties will die
if they’re submerged

for more than three days.

Flooding is expected
to be increasingly problematic

as the climate changes.

He told me that his graduate student
Kenong Xu and himself

were studying an ancient variety of rice
that had an amazing property.

It could withstand two weeks
of complete submergence.

He asked if I would be willing
to help them isolate this gene.

I said yes – I was very excited,
because I knew if we were successful,

we could potentially help
millions of farmers grow rice

even when their fields were flooded.

Kenong spent 10 years
looking for this gene.

Then one day, he said,

“Come look at this experiment.
You’ve got to see it.”

I went to the greenhouse and I saw

that the conventional variety
that was flooded for 18 days had died,

but the rice variety that we
had genetically engineered

with a new gene we had discovered,
called Sub1, was alive.

Kenong and I were amazed and excited

that a single gene could have
this dramatic effect.

But this is just a greenhouse experiment.

Would this work in the field?

Now, I’m going to show you
a four-month time lapse video

taken at the International
Rice Research Institute.

Breeders there developed
a rice variety carrying the Sub1 gene

using another genetic technique
called precision breeding.

On the left, you can see the Sub1 variety,

and on the right
is the conventional variety.

Both varieties do very well at first,

but then the field is flooded for 17 days.

You can see the Sub1 variety does great.

In fact, it produces
three and a half times more grain

than the conventional variety.

I love this video

because it shows the power
of plant genetics to help farmers.

Last year, with the help
of the Bill and Melinda Gates Foundation,

three and a half million farmers
grew Sub1 rice.

(Applause)

Thank you.

Now, many people don’t mind
genetic modification

when it comes to moving rice genes around,

rice genes in rice plants,

or even when it comes
to mixing species together

through grafting or random mutagenesis.

But when it comes to taking genes
from viruses and bacteria

and putting them into plants,

a lot of people say, “Yuck.”

Why would you do that?

The reason is that sometimes
it’s the cheapest, safest,

and most effective technology

for enhancing food security
and advancing sustainable agriculture.

I’m going to give you three examples.

First, take a look at papaya.
It’s delicious, right?

But now, look at this papaya.

This papaya is infected
with papaya ringspot virus.

In the 1950s, this virus
nearly wiped out the entire production

of papaya on the island of Oahu in Hawaii.

Many people thought
that the Hawaiian papaya was doomed,

but then, a local Hawaiian,

a plant pathologist
named Dennis Gonsalves,

decided to try to fight this disease
using genetic engineering.

He took a snippet of viral DNA
and he inserted it

into the papaya genome.

This is kind of like a human
getting a vaccination.

Now, take a look at his field trial.

You can see the genetically
engineered papaya in the center.

It’s immune to infection.

The conventional papaya around the outside
is severely infected with the virus.

Dennis' pioneering work is credited
with rescuing the papaya industry.

Today, 20 years later, there’s still no
other method to control this disease.

There’s no organic method.
There’s no conventional method.

Eighty percent of Hawaiian papaya
is genetically engineered.

Now, some of you may still feel a little
queasy about viral genes in your food,

but consider this:

The genetically engineered papaya
carries just a trace amount of the virus.

If you bite into an organic
or conventional papaya

that is infected with the virus,

you will be chewing on tenfold
more viral protein.

Now, take a look at this pest
feasting on an eggplant.

The brown you see is frass,

what comes out
the back end of the insect.

To control this serious pest,

which can devastate the entire
eggplant crop in Bangladesh,

Bangladeshi farmers spray insecticides

two to three times a week,

sometimes twice a day,
when pest pressure is high.

But we know that some insecticides
are very harmful to human health,

especially when farmers and their families

cannot afford proper protection,
like these children.

In less developed countries,
it’s estimated that 300,000 people

die every year because of
insecticide misuse and exposure.

Cornell and Bangladeshi scientists
decided to fight this disease

using a genetic technique that builds
on an organic farming approach.

Organic farmers like my husband Raoul
spray an insecticide called B.T.,

which is based on a bacteria.

This pesticide is very specific
to caterpillar pests,

and in fact, it’s nontoxic
to humans, fish and birds.

It’s less toxic than table salt.

But this approach
does not work well in Bangladesh.

That’s because these insecticide sprays

are difficult to find, they’re expensive,

and they don’t prevent the insect
from getting inside the plants.

In the genetic approach, scientists
cut the gene out of the bacteria

and insert it directly into
the eggplant genome.

Will this work to reduce
insecticide sprays in Bangladesh?

Definitely.

Last season, farmers reported they were
able to reduce their insecticide use

by a huge amount, almost down to zero.

They’re able to harvest
and replant for the next season.

Now, I’ve given you a couple examples
of how genetic engineering can be used

to fight pests and disease

and to reduce the amount of insecticides.

My final example is an example

where genetic engineering
can be used to reduce malnutrition.

In less developed countries,

500,000 children go blind every year
because of lack of Vitamin A.

More than half will die.

For this reason, scientists supported
by the Rockefeller Foundation

genetically engineered a golden rice

to produce beta-carotene,
which is the precursor of Vitamin A.

This is the same pigment
that we find in carrots.

Researchers estimate that just one cup
of golden rice per day

will save the lives
of thousands of children.

But golden rice is virulently opposed

by activists who are
against genetic modification.

Just last year,

activists invaded and destroyed
a field trial in the Philippines.

When I heard about the destruction,

I wondered if they knew that they
were destroying much more

than a scientific research project,

that they were destroying medicines
that children desperately needed

to save their sight and their lives.

Some of my friends and family still worry:

How do you know genes
in the food are safe to eat?

I explained the genetic engineering,

the process of moving
genes between species,

has been used for more than 40 years

in wines, in medicine,
in plants, in cheeses.

In all that time, there hasn’t been
a single case of harm

to human health or the environment.

But I say, look, I’m not
asking you to believe me.

Science is not a belief system.

My opinion doesn’t matter.

Let’s look at the evidence.

After 20 years of careful study
and rigorous peer review

by thousands of independent scientists,

every major scientific organization
in the world has concluded

that the crops currently
on the market are safe to eat

and that the process
of genetic engineering

is no more risky than older methods
of genetic modification.

These are precisely the same
organizations that most of us trust

when it comes to other
important scientific issues

such as global climate change
or the safety of vaccines.

Raoul and I believe that, instead of
worrying about the genes in our food,

we must focus on how we can help
children grow up healthy.

We must ask if farmers
in rural communities can thrive,

and if everyone can afford the food.

We must try to minimize
environmental degradation.

What scares me most about
the loud arguments and misinformation

about plant genetics

is that the poorest people
who most need the technology

may be denied access because of
the vague fears and prejudices

of those who have enough to eat.

We have a huge challenge in front of us.

Let’s celebrate scientific
innovation and use it.

It’s our responsibility

to do everything we can to help
alleviate human suffering

and safeguard the environment.

Thank you.

(Applause)

Thank you.

Chris Anderson: Powerfully argued.

The people who argue against GMOs,

as I understand it, the core piece
comes from two things.

One, complexity and
unintended consequence.

Nature is this incredibly complex machine.

If we put out these brand new genes
that we’ve created,

that haven’t been challenged
by years of evolution,

and they started mixing up
with the rest of what’s going on,

couldn’t that trigger some kind
of cataclysm or problem,

especially when you add in
the commercial incentive

that some companies have
to put them out there?

The fear is that those incentives

mean that the decision is not made
on purely scientific grounds,

and even if it was, that there would be
unintended consequences.

How do we know that there isn’t
a big risk of some unintended consequence?

Often our tinkerings with nature
do lead to big, unintended consequences

and chain reactions.

Pamela Ronald: Okay,
so on the commercial aspects,

one thing that’s really important
to understand is that,

in the developed world,
farmers in the United States,

almost all farmers, whether
they’re organic or conventional,

they buy seed produced by seed companies.

So there’s definitely a commercial
interest to sell a lot of seed,

but hopefully they’re selling seed
that the farmers want to buy.

It’s different in the
less developed world.

Farmers there cannot afford the seed.

These seeds are not being sold.

These seeds are being distributed freely

through traditional kinds
of certification groups,

so it is very important
in less developed countries

that the seed be freely available.

CA: Wouldn’t some activists say that this
is actually part of the conspiracy?

This is the heroin strategy.

You seed the stuff,
and people have no choice

but to be hooked on these seeds forever?

PR: There are a lot of conspiracy theories
for sure, but it doesn’t work that way.

For example, the seed that’s being
distributed, the flood-tolerant rice,

this is distributed freely

through Indian and Bangladeshi
seed certification agencies,

so there’s no commercial interest at all.

The golden rice was developed through
support of the Rockefeller Foundation.

Again, it’s being freely distributed.

There are no commercial profits

in this situation.

And now to address your other question
about, well, mixing genes,

aren’t there some unintended consequences?

Absolutely – every time
we do something different,

there’s an unintended consequence,

but one of the points I was trying to make

is that we’ve been doing
kind of crazy things to our plants,

mutagenesis using radiation
or chemical mutagenesis.

This induces thousands
of uncharacterized mutations,

and this is even a higher risk
of unintended consequence

than many of the modern methods.

And so it’s really important
not to use the term GMO

because it’s scientifically meaningless.

I feel it’s very important to talk
about a specific crop

and a specific product, and think about
the needs of the consumer.

CA: So part of what’s happening here
is that there’s a mental model

in a lot of people that nature is nature,
and it’s pure and pristine,

and to tinker with it is Frankensteinian.

It’s making something that’s pure
dangerous in some way,

and I think you’re saying
that that whole model

just misunderstands how nature is.

Nature is a much more chaotic
interplay of genetic changes

that have been happening
all the time anyway.

PR: That’s absolutely true, and there’s
no such thing as pure food.

I mean, you could not spray
eggplant with insecticides

or not genetically engineer it,
but then you’d be stuck eating frass.

So there’s no purity there.

CA: Pam Ronald, thank you.
That was powerfully argued.

PR: Thank you very much. I appreciate it.

(Applause)

我是植物遗传学家。

我研究使植物
抗病

和抗压的基因。

近年来,

全世界数以百万计的
人开始

相信基因改造存在某种险恶的东西

今天,我将提供
一个不同的观点。

首先,让我介绍一下我的丈夫 Raoul。

他是一个有机农民。

在他的农场里,他种植
了各种不同的作物。

这是他用来保持农场健康的众多
生态农业实践之一

想象一下我们得到的一些反应:

“真的吗?有机农民
和植物遗传学家?

你能同意任何事情吗?”

嗯,我们可以,而且不难,
因为我们有相同的目标。

我们希望在不进一步破坏环境的情况下帮助
滋养不断增长的人口

我相信这
是我们这个时代最大的挑战。

现在,基因改造并不新鲜。

我们吃的几乎所有东西

以某种方式进行了基因改造。

让我给你举几个例子。

左边是

现代玉米古老祖先的形象。

您会看到一卷
包裹在硬箱中的谷物。

除非你有锤子,否则

teosinte 不适合做玉米饼。

现在,来看看
香蕉的古老祖先。

你可以看到大种子。

还有难吃的球芽甘蓝

和茄子,太美了。

现在,为了创造这些品种,

育种者多年来使用了许多不同的
遗传技术。

其中一些非常有创意,

例如使用一种称为嫁接的过程将两种不同的物种混合在一起,

以创造出
这种半番茄半马铃薯的品种。

育种者还使用了
其他类型的遗传技术,

例如随机诱变,

它会在植物中诱导未表征的突变

我们许多人喂养婴儿

的谷物中的大米就是使用这种方法开发的。

现在,今天,育种者有
更多的选择可供选择。

其中一些非常精确。

我想
从我自己的工作中举几个例子。

我从事大米工作,大米是
世界上一半以上人口的主食。

每年,40%
的潜在收成

都会因病虫害而损失。

出于这个原因,
农民种植

带有抗性基因的水稻品种。

这种方法已经使用
了近 100 年。

然而,当我开始读研究生时,

没有人知道这些基因是什么。

直到 1990 年代
,科学家们才终于发现

了抗药性的遗传基础。

在我的实验室中,我们分离出一种基因
,可以免疫亚洲和非洲的一种非常严重的

细菌性疾病。

我们发现我们可以将该基因
改造为通常易感的传统水稻品种

并且您可以看到底部的两片叶子

对感染具有高度抵抗力。

现在,就在
我的实验室发表

我们关于水稻免疫基因的发现的同一个月,

我的朋友和同事戴夫·麦克基尔(Dave Mackill)来到
我的办公室。

他说,“7000万稻农
在种植稻米方面遇到了困难。”

那是因为他们的田地被淹了,

而这些稻农
每天的生活费还不到两美元。

虽然水稻
在积水中生长良好,但

大多数水稻品种
如果被

淹没超过三天就会死亡。

随着气候变化,预计洪水问题将越来越严重

他告诉我,他的研究生
徐克农和他自己

正在研究一种具有惊人特性的古老水稻品种

它可以承受两周
的完全淹没。

他问我是否
愿意帮助他们分离这个基因。

我说是的——我非常兴奋,
因为我知道如果我们成功了,即使他们的田地被洪水淹没,

我们也有可能帮助
数百万农民种植水稻

克农花了 10 年时间
寻找这个基因。

然后有一天,他说,

“来看看这个实验。
你必须看到它。”

我去了温室,

看到被淹了 18 天的传统品种已经死了,

但是我们

用我们发现的新基因进行基因改造的水稻品种,
叫做 Sub1,还活着。

Kenong 和我

对一个基因可以产生
这种戏剧性的效果感到惊讶和兴奋。

但这只是一个温室实验。

这会在现场工作吗?

现在,我将向您展示在国际水稻研究所拍摄
的四个月的延时视频

那里的育种者使用另一种称为精确育种的遗传技术开发
了一种携带 Sub1 基因的水稻品种

左边是Sub1品种

,右边
是常规品种。

这两个品种一开始都做得很好,

但随后田地被淹了 17 天。

您可以看到 Sub1 品种做得很好。

事实上,它的谷物产量

是传统品种的三倍半。

我喜欢这个视频,

因为它展示
了植物遗传学帮助农民的力量。

去年,
在比尔和梅琳达盖茨基金会的帮助下,

三百五十万农民
种植了 Sub1 水稻。

(掌声)

谢谢。

现在,

当涉及到移动

水稻基因、水稻植物中的水稻基因,

甚至涉及

通过嫁接或随机诱变将物种混合在一起时,许多人并不介意基因改造。

但是当谈到
从病毒和细菌中提取基因

并将它们植入植物时

,很多人会说,“糟糕”。

为什么要这么做?

原因是有时
它是增强粮食安全和推进可持续农业的最便宜、最安全

和最有效的技术

我给你举三个例子。

首先,看看木瓜。
很好吃,对吧?

但是现在,看看这个木瓜。

这种木瓜感染
了木瓜环斑病毒。

在 1950 年代,这种病毒
几乎摧毁了

夏威夷瓦胡岛上的整个木瓜生产。

很多人
认为夏威夷木瓜注定要灭亡,

但后来,夏威夷当地人

、植物病理学家
丹尼斯·贡萨尔维斯(Dennis Gonsalves)

决定尝试使用基因工程来对抗这种疾病

他提取了一段病毒 DNA
,并将其

插入木瓜基因组中。

这有点像人类
接种疫苗。

现在,看看他的现场试验。

您可以
在中心看到转基因木瓜。

它对感染免疫。

外面的常规木瓜
感染病毒严重。

丹尼斯的开创性工作被
认为拯救了木瓜产业。

20 年后的今天,仍然没有
其他方法可以控制这种疾病。

没有有机的方法。
没有传统的方法。

百分之八十的夏威夷木瓜
是经过基因工程改造的。

现在,你们中的一些人可能仍然
对食物中的病毒基因感到有些不安,

但请考虑一下

:基因工程木瓜
只携带微量的病毒。

如果您咬入感染了病毒的有机
或传统木瓜

您将咀嚼十倍
以上的病毒蛋白。

现在,看看这种
以茄子为食的害虫。

你看到的棕色是碎屑,

是从
昆虫的后端出来的。

为了控制这种严重的害虫,

它会破坏孟加拉国的整个
茄子作物,

孟加拉国农民

每周喷洒 2 到 3 次杀虫剂,

有时是一天两次,此时
害虫压力很大。

但我们知道,有些杀虫剂
对人体健康非常有害,

尤其是在农民及其家人

无法负担适当保护的情况下,
比如这些孩子。

在欠发达国家,
估计每年有 300,000 人


滥用和接触杀虫剂而死亡。

康奈尔大学和孟加拉国的科学家
决定

使用一种建立
在有机农业方法基础上的基因技术来对抗这种疾病。

像我丈夫拉乌尔这样的有机农民会
喷洒一种叫做 B.T. 的杀虫剂,

这种杀虫剂是基于细菌的。

这种杀虫剂对毛虫害虫非常有针对性

,事实上,它对
人类、鱼类和鸟类是无毒的。

它的毒性低于食盐。

但这种方法
在孟加拉国并不奏效。

那是因为这些杀虫剂

喷雾剂很难找到,它们很贵,

而且它们不能阻止
昆虫进入植物内部。

在遗传方法中,科学家们
从细菌中切出基因

并将其直接
插入茄子基因组中。

这将有助于减少
孟加拉国的杀虫剂喷雾吗?

确实。

上个季节,农民报告说他们
能够大量减少杀虫剂的

使用,几乎降到零。

他们能够
为下一季收获和补种。

现在,我给你们举了几个例子
,说明如何使用基因工程

来对抗病虫害

和减少杀虫剂的用量。

我的最后一个例子

是基因工程
可以用来减少营养不良的例子。

在欠发达国家,

每年有 500,000 名儿童
因缺乏维生素 A 而失明。

一半以上会死亡。

出于这个原因,
在洛克菲勒基金会的支持下,科学家们通过

基因工程改造了一种黄金大米,

以产生β-胡萝卜素,
这是维生素 A 的前体。

这与
我们在胡萝卜中发现的色素相同。

研究人员估计,
每天只需一杯黄金大米

就可以
挽救数千名儿童的生命。

但黄金大米遭到反对基因改造

的活动人士的强烈反对

就在去年,

激进分子入侵并摧毁
了菲律宾的一次现场试验。

当我听到破坏的消息时,

我想知道他们是否知道
他们破坏的

不仅仅是一个科学研究项目

,他们正在破坏
儿童

急需挽救视力和生命的药物。

我的一些朋友和家人仍然担心:

你怎么知道
食物中的基因可以安全食用?

我解释了基因工程,


在物种之间转移基因的过程,

已经

在葡萄酒、医学
、植物和奶酪中使用了 40 多年。

在那段时间里,没有一起

对人类健康或环境造成伤害的案例。

但我说,看,我不是
要你相信我。

科学不是一个信仰体系。

我的意见无所谓。

让我们看看证据。

经过 20 年的仔细研究

和数千名独立科学家的严格同行评审,世界上

每个主要科学
组织都得出

结论,目前
市场上的农作物可以安全食用,

并且
基因工程

的过程并不比旧方法更具风险
的基因改造。

在涉及

全球气候变化
或疫苗安全等其他重要科学问题时,我们大多数人都信任这些组织。

Raoul 和我相信,
与其担心食物中的基因,

我们必须专注于如何帮助
孩子健康成长。

我们必须询问
农村社区的农民是否能够茁壮成长

,是否每个人都能买得起食物。

我们必须尽量减少
环境退化。

关于植物遗传学
的激烈争论和错误信息最让我害怕的

是,最需要这项技术的最贫穷的人

可能会因为

那些有足够食物的人的模糊恐惧和偏见而被拒绝使用。

我们面临着巨大的挑战。

让我们庆祝科学
创新并使用它。

尽我们所能帮助
减轻人类痛苦

和保护环境是我们的责任。

谢谢你。

(掌声)

谢谢。

克里斯·安德森:有力地争论。

据我了解,反对转基因生物的人

,核心部分
来自两件事。

一,复杂性和
意想不到的后果。

大自然就是这台极其复杂的机器。

如果我们推出这些
我们创造的全新基因,

它们没有
受到多年进化的挑战

,它们开始
与正在发生的其他事情混在一起,

这不会引发
某种灾难或问题,

特别是当你加上

一些公司必须
把它们放在那里的商业激励时?

令人担心的是,这些激励措施

意味着该决定不是
基于纯粹的科学依据做出的

,即使是这样,也会产生
意想不到的后果。

我们怎么知道不存在
某种意外后果的大风险?

通常,我们对自然的修补
确实会导致巨大的、意想不到的后果

和连锁反应。

帕梅拉·罗纳德:好的
,关于商业方面,

有一点非常重要
,那就是,

在发达国家,
美国的

农民,几乎所有的农民,
无论是有机的还是传统的,

他们都会购买由种子生产的种子 公司。

因此
,出售大量种子肯定有商业利益,

但希望他们出售的
是农民想要购买的种子。


欠发达国家则不同。

那里的农民买不起种子。

这些种子没有出售。

这些种子

通过传统
的认证团体免费分发,

因此
在欠发达国家

免费提供种子非常重要。

CA:一些激进分子不会说
这实际上是阴谋的一部分吗?

这就是海洛因策略。

你播种这些东西
,人们

别无选择,只能永远迷恋这些种子?

PR:肯定有很多阴谋
论,但不是那样的。

例如,正在分发的种子
,抗洪水稻,

这是

通过印度和孟加拉国的
种子认证机构免费分发的,

因此根本没有商业利益。

黄金大米是
在洛克菲勒基金会的支持下开发的。

同样,它是免费分发的。

在这种情况下没有商业利润。

现在来解决你
关于混合基因的另一个问题

,难道没有一些意想不到的后果吗?

绝对 - 每次
我们做不同的事情时,

都会产生意想不到的后果,

但我想说的

一点是,我们一直在
对我们的植物做一些疯狂的事情,

使用辐射
或化学诱变进行诱变。

这会导致
数千个未表征的突变,

与许多现代方法相比,这甚至是更高
的意外后果风险

所以
不要使用转基因这个词非常重要,

因为它在科学上没有意义。

我觉得
谈论特定的作物

和特定的产品,并考虑
消费者的需求非常重要。

CA:所以这里发生的部分情况
是,

很多人都有一个心理模型,认为自然就是自然
,它是纯洁的,原始的

,修补它是科学怪人。

它在某种程度上制造了纯粹
危险的东西

,我认为你是在
说整个模型

只是误解了自然的本质。

自然是基因变化的更混乱的
相互作用,无论如何,这些变化

一直在发生

PR:这绝对是真的,而且
没有纯食物这回事。

我的意思是,你不能在
茄子上喷洒杀虫剂

或不对其进行基因工程改造,
但那样你就会被困在吃杂草中。

所以那里没有纯洁。

CA:帕姆·罗纳德,谢谢。
对此进行了有力的论证。

公关:非常感谢。 我很感激。

(掌声)