Why is ketchup so hard to pour George Zaidan

French fries are delicious.

French fries with ketchup are a little slice of heaven.

The problem is it’s basically impossible

to pour the exactly right amount.

We’re so used to pouring ketchup that we don’t realize

how weird its behavior is.

Imagine a ketchup bottle filled with a straight up solid like steel.

No amount of shaking would ever get the steel out.

Now imagine that same bottle full of a liquid like water.

That would pour like a dream.

Ketchup, though, can’t seem to make up its mind.

Is it is a solid? Or a liquid?

The answer is, it depends.

The world’s most common fluids like water, oils and alcohols

respond to force linearly.

If you push on them twice as hard, they move twice as fast.

Sir Isaac Newton, of apple fame, first proposed this relationship,

and so those fluids are called Newtonian fluids.

Ketchup, though, is part of a merry band of linear rule breakers

called Non-Newtonian fluids.

Mayonnaise, toothpaste, blood, paint, peanut butter

and lots of other fluids respond to force non-linearly.

That is, their apparent thickness changes

depending on how hard you push, or how long, or how fast.

And ketchup is actually Non-Newtonian in two different ways.

Way number one: the harder you push, the thinner ketchup seems to get.

Below a certain pushing force,

ketchup basically behaves like a solid.

But once you pass that breaking point,

it switches gears and becomes a thousand times thinner than it was before.

Sound familiar right?

Way number two: if you push with a force below the threshold force

eventually, the ketchup will start to flow.

In this case, time, not force, is the key to releasing ketchup

from its glassy prison.

Alright, so, why does ketchup act all weird?

Well, it’s made from tomatoes, pulverized, smashed, thrashed,

utterly destroyed tomatoes.

See these tiny particles?

This is what remains of tomatoes cells

after they go through the ketchup treatment.

And the liquid around those particles?

That’s mostly water and some vinegar, sugar, and spices.

When ketchup is just sitting around,

the tomato particles are evenly and randomly distributed.

Now, let’s say you apply a weak force very quickly.

The particles bump into each other,

but can’t get out of each other’s way,

so the ketchup doesn’t flow.

Now, let’s say you apply a strong force very quickly.

That extra force is enough to squish the tomato particles,

so maybe instead of little spheres,

they get smushed into little ellipses, and boom!

Now you have enough space for one group of particles

to get passed others and the ketchup flows.

Now let’s say you apply a very weak force but for a very long time.

Turns out, we’re not exactly sure what happens in this scenario.

One possibility is that the tomato particles near the walls of the container

slowly get bumped towards the middle,

leaving the soup they were dissolved in,

which remember is basically water,

near the edges.

That water serves as a lubricant betwen the glass bottle

and the center plug of ketchup,

and so the ketchup flows.

Another possibility is that the particles slowly rearrange themselves

into lots of small groups, which then flow past each other.

Scientists who study fluid flows are still actively researching

how ketchup and its merry friends work.

Ketchup basically gets thinner the harder you push,

but other substances, like oobleck or some natural peanut butters,

actually get thicker the harder you push.

Others can climb up rotating rods,

or continue to pour themselves out of a beeker,

once you get them started.

From a physics perspective, though,

ketchup is one of the more complicated mixtures out there.

And as if that weren’t enough, the balance of ingredients

and the presence of natural thickeners like xanthan gum,

which is also found in many fruit drinks and milkshakes,

can mean that two different ketchups

can behave completely differently.

But most will show two telltale properties:

sudden thinning at a threshold force,

and more gradual thinning after a small force

is applied for a long time.

And that means you could get ketchup out of the bottle in two ways:

either give it a series of long, slow languid shakes

making sure you don’t ever stop applying force,

or you could hit the bottle once very, very hard.

What the real pros do is keep the lid on,

give the bottle a few short, sharp shakes

to wake up all those tomato particles,

and then take the lid off

and do a nice controlled pour onto their heavenly fries.

炸薯条很好吃。

带有番茄酱的炸薯条是天堂的一小部分。

问题是基本上

不可能倒出完全正确的量。

我们已经习惯了倒番茄酱,以至于我们没有意识到

它的行为有多奇怪。

想象一个番茄酱瓶,里面装满了像钢一样的直立固体。

再多的晃动也无法将钢铁取出。

现在想象同一个瓶子里装满了像水一样的液体。

那会像梦一样倾泻而下。

不过,番茄酱似乎无法下定决心。

是固体吗? 还是液体?

答案是,这取决于。

世界上最常见的流体,如水、油和醇,

对力的响应呈线性。

如果你用两倍的力推它们,它们会以两倍的速度移动。

以苹果闻名的艾萨克·牛顿爵士首先提出了这种关系

,因此这些流体被称为牛顿流体。

然而,番茄酱是一组被称为非牛顿流体的线性规则破坏者的一部分

蛋黄酱、牙膏、血液、油漆、花生酱

和许多其他液体对力的反应是非线性的。

也就是说,它们的表观厚度会

根据你推的力度、时间或速度而变化。

番茄酱实际上以两种不同的方式是非牛顿的。

方法一:你越用力,番茄酱似乎越薄。

在一定的推力之下,

番茄酱基本上表现得像固体。

但是一旦你越过了那个临界点,

它就会换档,变得比以前薄一千倍。

听起来很熟悉吧?

方法二:如果你最终用低于阈值的力推动

,番茄酱将开始流动。

在这种情况下,时间,而不是力量,是将番茄酱

从玻璃牢笼中释放出来的关键。

好吧,那么,为什么番茄酱的行为很奇怪?

嗯,它是由西红柿制成的,经过粉碎、捣碎、捣碎、

完全摧毁的西红柿。

看到这些微小的颗粒了吗?

这是番茄细胞

经过番茄酱处理后的残留物。

那些粒子周围的液体呢?

主要是水和一些醋、糖和香料。

当番茄酱只是闲置时

,番茄颗粒均匀随机分布。

现在,假设您非常快速地施加了弱力。

颗粒相互碰撞,

但不能相互避开,

因此番茄酱不会流动。

现在,假设您非常快速地施加了强大的力。

这种额外的力量足以挤压番茄颗粒,

所以也许它们不是小球体,

而是被压成小椭圆,然后砰!

现在你有足够的空间让一组

粒子通过其他粒子并且番茄酱流动。

现在假设您施加了一个非常弱的力,但持续了很长时间。

事实证明,我们不确定在这种情况下会发生什么。

一种可能性是容器壁附近的番茄颗粒

慢慢地向中间碰撞,

留下溶解在其中的汤,

记住基本上是水,

靠近边缘。

水充当玻璃瓶

和番茄酱中心塞之间的润滑剂

,因此番茄酱流动。

另一种可能性是粒子慢慢地重新

排列成许多小组,然后彼此流过。

研究流体流动的科学家仍在积极

研究番茄酱及其快乐朋友的工作原理。

番茄酱基本上越用力越稀,

但其他物质,如 oobleck 或一些天然花生酱,

实际上越用力越稠。

其他人可以爬上旋转杆,

或者继续从啤酒杯中倒出来,

一旦你开始了。

然而,从物理学的角度来看,

番茄酱是最复杂的混合物之一。

似乎这还不够,成分的平衡

和天然增稠剂(如黄原胶)

的存在(也存在于许多水果饮料和奶昔中)

可能意味着两种不同的番茄酱

的表现可能完全不同。

但大多数会表现出两个明显的特性:

在阈值力处突然变薄,

以及在长时间施加小力后逐渐变薄

这意味着你可以通过两种方式从瓶子中取出番茄酱:

要么给它一系列长时间、缓慢的慵懒摇晃

,确保你永远不会停止施力,

要么你可以非常非常用力地敲打瓶子一次。

真正的专业人士所做的是盖上

盖子,轻轻摇晃瓶子几下,

以唤醒所有番茄颗粒,

然后取下盖子

,控制好倒在他们的炸薯条上。