An Introductory to Quantum Physics

what does it mean to see something

for us on a larger scale it’s the light

bouncing from the object to our eyes

and our brain produces a visualization

of the object

however when we want to see something

that’s

say small say smaller than an atom

say maybe a cork this is not the case

you see the particle of light that we

use to see

usually is quite literally too big

it just passes straight through them so

nothing bounces back

and you don’t see anything how do we fix

this so we can you know see something

we do it by firing particles of higher

energy they’re smaller

they go faster they hit it except

there’s a problem in it

when it hits it it changes it

so we don’t know what it actually looks

like

this is incredibly important and it’s

part of the heisenberg uncertainty

principle

and is one of the fundamental reasons in

quantum physics why nearly everything is

theoretical however with the

accumulation of many theory scientists

have put them together

to form one most generally accepted

models of quantum physics the standard

model

the standard model has many important

parts in it

however there are flaws in it that have

to still be addressed

to this day and one of these flaws is

inside one of the most important parts

of it

fundamental forces when we think of

fundamental forces

we think of gravity maybe some

electricity but

simply in their simplest form

fundamental forces are

information and in order to affect

something

they have to transfer that information

and they need something to carry that

information

so every force has something that’s

called a force carrier

and every force is theorized to have one

for example

we’re going to use the strong nuclear

force

the strong nuclear force affects the

attraction between quarks

and other things so for example

we have quark number one and quark

number two

they both affect each other through the

strong nuclear force

however in order to do that

they have the gluon which goes between

them

and transfers the information of the

force and basically tells them hey

you’re supposed to be doing this

and every force has this there are

different names

for example the weak nuclear force it’s

the boson the electromagnetic force

the photon and theoretically the

gravitational force

the graviton each of these forces have

calculations inside the standard model

to simulate

to allow scientists to simulate

different things that could happen

inside our universe

except for one gravity

gravity is a force much unlike the

others

einstein theorized inside general

relativity that it was a force

intertwined within

space and time the problem with gravity

although it has multiple problems one of

them

is the medium that uses the transfer its

information

the medium that it uses to transfer its

information is quite literally the

fabric of space

and that’s a problem because the

graviton has to travel through that in

order to

transfer this information so scientists

said hey we’re going to look for it and

well you know they didn’t find it

they didn’t find a single particle with

the properties needed for a graviton

and that’s a problem because if they

don’t know if it exists

they don’t know if there’s properties

that need to be fixed

and that means it has no calculations

inside the standard model to simulate

things

so how do we fix this

we could spend a lot of time it’s like

searching

a needle in a haystack the size of a

continent for the graviton

however that would take a long time

so we try to fix this by doing a

different thing

by creating an entirely different model

of quantum physics this model was called

string theory string theory was first

proposed in 1974 by to these two lovely

scientists

named joel shirk and john schwabatz and

yes that’s how you say it

they theorized that as a low particles

in space

not as little one-dimensional points but

rather as a length of string

with no thickness this string was said

to exist

in two forms open in which both ends of

the string don’t

touch and close in which the ends of the

string do touch

forming a ring what’s important about

the ring however

is that they theorize that the ring

would have the exact particle properties

of the graviton

so they could find it

however now scientists need to decide

hey how long

are these strings and let’s just say

they’re small

how small are they there’s actually a

length associated

with quantum gravity it’s called the

planck length and since it’s associative

gravity side hey

let’s make that the string length and

the calculations worked out

how long is the plank length you might

be asking here

is the diameter of a single hydrogen

atom

pretty small one meter times 10 to the

negative tenth

a single neutron is even smaller one

meter

times 1.7 meters times ten to the

negative fifteenth

however the planck length is even

smaller

one point six meters times ten to the

negative thirty-fifth

that’s quite literally trillions of

trillions of times smaller than a

neutron

and even with these particles of higher

energy we’ll

never be able to find it or look at it

now there’s a problem with this though

might be saying hey these strings

represent

forces that affect areas larger than the

string

length how do they work and

i believe that this is adequately

explained by a quote from paul ho

which states it follows that for

distances much longer than the string

length

although still very small we can

approximate

string theory by a particle theory only

involving particles of the lowest mass

in the string spectrum

it is with this batch contact that

root is made with theories we know

for example the effective theory of a

closed string is a version of general

relativity

modified by the presence of some extra

fields

one more thing the closed string

represents the graviton

however there are still three other

forces that the open string

has to represent the strings are all the

same

so how do they represent free entirely

different forces

this is described in string theory as

different vibrations on the string so

say the weak nuclear force

will have a lower vibration than say a

strong nuclear force

now why hasn’t this been accepted yet

there is a problem string theory

requires

more dimensions than we currently know

the version of string theory

that was created by those two scientists

it’s called super string theory because

it uses super symmetry

this version of string theory there are

more

requires ten different dimensions

and if we can count one two three

oh no we’re missing seven other versions

of string theory

require even more so

scientists can’t simulate things in our

universe using string theory because

we don’t have those 10 dimensions

so if string theory didn’t solve the

problem of

gravity and part in quantum physics

how do we use it then because

quantum gravity isn’t entirely unknown

concept in

quantum physics

before einstein created general

relativity

scientists were still using the

newtonian model

of gravity however people realized that

when they applied this model

to very small or very large levels there

were

lots of holes inside of it like a lot of

holes

so they decided hey we need something

new

that’s where einstein created general

relativity general relativity if you

don’t know

is a geometrical model of gravity that

is still in use by physicists today

which is quite amazing seeing as it was

made nearly

100 years ago before even world war ii

started

there were many important things inside

of general relativity

for example i was able to describe the

interaction of

gravity at very small levels something

that the newtonian model was never able

to do

however one of the things inside of it

as i mentioned previously was that it

was intertwined within space and time

part of this has been actually

experimentally proven

through the separation of clocks on the

surface of earth

and in space now

why does any of this matter the thing is

the reason why the standard model still

works even without gravity inside of it

is because the force of gravity that the

particles produce at those

small tiny levels is so small

it barely makes a dent if you just

remove the effect of gravity completely

however that’s a problem because if you

want to simulate

strong forces of gravity upon those

small

particles you will be unable to do that

using the standard model

so what physicists have done is they

first apply the stair model

to all the small interactions and then

they use general relativity’s gravity

and to apply it to the huge forces of

gravity

for example the core of our star our

star is very heavy

and the force of gravity it produces

allows atoms inside of it to fuse

together

creating heavier elements while

releasing massive amounts of energy

research and understanding this could

lead to fantastical inventions like a

fusion reactor

and this leads me on to my final point

of today

how this affects us in our daily lives

when we think of quantum physics we

often think of its

bizarre mathematical theories

but we rarely ever think of the physical

inventions and the technological

advancements that it has further

for example take your phone the entirety

of the computing inside of it

fully relies on the wave-like nature of

the electron

in order to transfer power and

information throughout the phone

lasers which are used in things like cd

readers to laser cutters

reply rely on the unique interaction

between the photon and atoms

gps which is used by people around the

world

to navigate fully depends on the fact

that the speed of light is constant

and by timing it we can triangulate

someone’s position

exactly quantum physics

isn’t a entirely theoretical concept

that will only help us understand things

at a small level that will never affect

us

quantum physics also isn’t something

that can only be understood by say the

smartest people

in the world quantum physics is the

future

of mankind thank you

you

在更大的范围内看到某物对我们来说意味着什么?它是

从物体反射到我们眼睛的光

,我们的大脑会产生物体的可视

化,

但是当我们想看到

比原子更小的东西时,

说可能是 软木塞不是这种情况,

您看到我们通常看到的光粒子

实际上太大了,

它只是直接穿过它们,所以

没有任何东西反弹回来

,您什么也看不到我们如何解决

这个问题,所以我们可以知道 看到

我们通过发射更高能量的粒子来做到这一点,

它们更小,

它们跑得更快,它们击中它,除非它

有问题,

当它击中它时它会改变它,

所以我们不知道它实际上是什么样子

这非常重要并且 它

是海森堡测不准原理的一部分,也是

量子物理学中为什么几乎所有事物都是

理论的根本原因之一,然而

随着许多理论的积累,科学家

们将它们组合

在一起形成了一个 最普遍接受

的量子物理学模型 标准

模型 标准模型中有许多重要的

部分,

但是它仍然存在缺陷,直到今天

仍然需要

解决,其中一个缺陷

是它最重要的部分

之一。

当我们想到

基本力时,

我们想到的引力可能是一些

电,但

简单来说,

基本力就是

信息,为了影响

某些东西,

它们必须传递信息

,并且需要一些东西来携带

信息,

所以每一种力都有一些东西

称为力载体

,理论上每个力都有一个

例如

我们将使用强核

力强核力会影响

夸克

和其他事物之间的吸引力,例如

我们有第一夸克和第二夸克

它们都有 通过强大的核力相互影响,

但是为了做到这一点,

他们有胶子 在它们

之间传递力的信息

,基本上告诉他们,

你应该这样做

,每个力都有

不同的名称

,例如弱核力

是玻色子,电磁

力,光子,理论上是

引力

引力子 这些力中的每一个

在标准模型中都有计算

来模拟,

以允许科学家模拟

我们宇宙中可能发生的不同事物,

除了一个引力

引力是一种力,与

爱因斯坦在广义相对论中理论化的其他力很不一样

,它是一种力

空间和时间中交织在一起 引力的问题

虽然它有多个问题,其中之一

是使用传输其

信息

的介质 它用于传输其信息的介质

实际上

是空间的结构

,这是一个问题,因为

引力子有 穿越它以

传输此信息 所以科学家

说,嘿,我们要寻找它

,你知道他们没有找到它,

他们没有找到具有引力子所需特性的单个粒子

,这是一个问题,因为如果他们

不知道它是否 存在

他们不知道是否有需要修复的属性

,这意味着它

在标准模型中没有计算来模拟

事物

所以我们如何解决这个问题

我们可能会花费大量时间这就像

大海捞针一样 一个

大陆的大小对于引力子

来说需要很长时间,

所以我们尝试

通过创建一个完全不同

的量子物理学模型来做不同的事情来解决这个问题。这个模型被称为

弦理论 弦理论是

在 1974 年由这些人首次提出的 两位可爱的

科学家

叫 joel shirk 和 john

schwabatz 据说戒指

以两种形式存在:打开的形式

,绳的两端不

接触,闭合的形式,绳的末端

接触

形成一个环

引力子的精确粒子特性,

因此他们可以找到它,

但是现在科学家需要确定

这些弦有多长,让我们说

它们

很小,它们实际上有一个

与量子引力相关的长度,它被称为

普朗克长度,因为 它是关联

重力方面,嘿,

让我们计算一下弦长

和计算出

你可能会问的木板长度有多长

是单个氢原子的直径

非常小一米乘以 10 到

负十分之一

单个中子是偶数 更小一

乘以 1.7 米乘以十到

负十五

但是普朗克长度甚至

更小

一点六米乘以十到

负 thi rty-fifth

比中子小几万亿倍

,即使有了这些更高

能量的粒子,我们

也永远无法找到或看到它

影响大于弦长的区域的力它们是

如何工作的,

我相信这可以

用 paul ho 的一句话来充分解释,

它指出对于

比弦长远得多的距离

虽然仍然很小,但我们可以

通过以下方式近似弦理论 仅涉及弦谱中质量最低的粒子的粒子理论

正是通过这种批量接触,

根是与我们知道

的理论建立的,例如闭合弦的有效理论

是广义相对论的一个版本,

通过一些额外的存在来修改

封闭的弦

代表引力子的另一件事,

但是

开放的弦

还必须代表其他三种力 怨恨弦都是

一样的,

所以它们如何代表自由完全

不同的力

这在弦理论中被描述为

弦上的不同振动,所以

说弱

核力的振动比现在说的强核力低,

为什么没有 这已被接受,但

存在一个问题 弦理论

需要

比我们目前所知的更多的维度

这两位科学家创建的

弦理论版本它被称为超弦理论,因为

它使用超对称性

这个版本的弦理论还有

更多

需要十个不同的 维度

,如果我们能数一二三

哦不,我们错过了七个其他版本

的弦理论

需要更多,因此

科学家无法

使用弦理论模拟我们宇宙中的事物,因为

我们没有这 10 个维度,

所以如果弦理论 没有解决

引力问题和部分量子物理学

我们如何使用它,因为

量子引力并不是完全未知的

在爱因斯坦创建广义相对论之前,量子物理学中的 pt

科学家仍在使用

牛顿

引力模型,但是人们意识到,

当他们将这个模型

应用于非常小或非常大的水平时,里面会有

很多洞,就像很多

洞一样,

所以他们决定 嘿,我们需要一些

的东西,这就是爱因斯坦创造广义相对论的地方

广义相对论

是一种引力的几何模型,

今天物理学家仍在使用

它,这是相当惊人的,因为它是

在近

100 年前甚至在世界大战之前制作 ii

开始

在广义相对论中有许多重要的东西

,例如我能够

在非常小的水平上描述引力的相互作用,

这是牛顿模型永远无法

做到的,

但是

正如我之前提到的,其中的一件事是 它

在空间和时间中交织在一起,其中

一部分实际上已经通过分离得到了

实验证明

现在地球表面和太空中的时钟离子

为什么这很重要 这

就是为什么标准模型

即使内部没有重力仍然有效的原因

是因为

粒子在那些

微小的水平上产生的重力 它是如此之小

,如果你

完全消除重力的影响,它几乎不会产生凹痕,

但这是一个问题,因为如果你

在这些小粒子上模拟强大的重力,

你将无法使用标准模型来做到这一点,

所以物理学家有 他们

首先将阶梯模型

应用于所有小的相互作用,然后

他们使用广义相对论的引力

并将其应用于巨大的

引力

,例如我们恒星的核心,我们的

恒星非常重

,它产生的引力

允许 它内部的原子融合

在一起

产生更重的元素,同时

释放大量的能量

研究和理解这可能

会导致奇妙的发明 像聚变反应堆一样的离子

,这使我进入

了今天

的最后一点,

当我们想到量子物理学时,我们

经常想到其

奇异的数学理论,

但我们很少想到物理

发明和技术

它具有进一步的进步,

例如你的手机

,它内部的整个计算

完全依赖于电子的波状特性,

以便在整个手机激光器中传输能量和

信息,

这些激光器用于诸如 cd

阅读器到激光之类的东西 切割机的

回答依赖于

光子和原子之间独特的相互作用

gps 被世界各地的人们

用来导航完全取决于

光速是恒定的这一事实,

并且通过计时我们可以精确地三角测量

某人的位置

量子物理学

不是 一个完全理论的概念

,它只会帮助我们

在很小的层面上理解事物,而不会影响

我们的

量子物理学。 不是

只有说世界上最聪明的人才能理解的东西

量子物理学是人类的

未来

谢谢你