Building unimaginable shapes Michael Hansmeyer

as an architect i often ask myself what

is the origin of the forms that we

design

what kind of forms

could we design if we if we wouldn’t

work with references anymore if we had

no bias if we had no preconceptions

what kind of forms could we design if we

could free ourselves from from our

experience

if we could free ourselves from our our

education

what would these unseen forms look like

would they would they surprise us would

they intrigue us

would they delight us

if so then how can we go about creating

something that is truly new

i propose we look to nature

nature has been called the greatest

architect of forms

and i’m not saying that we should copy

nature i’m not saying we should mimic

biology

instead i propose that we can borrow

nature’s processes we can abstract them

and to create something that is new

nature’s main process of creation

morphogenesis is the splitting of one

cell into two cells and these cells can

either be identical or they can be

distinct from each other through

asymmetric cell division

if we abstract this process and simplify

it as much as possible then we could

start with a single sheet of paper one

surface and we could make a fold and

divide the surface into two surfaces

we’re free to choose where we make the

fold

and by doing so we can differentiate the

surfaces

through this very simple process we can

create an astounding variety of forms

now we can take this form and use the

same process to generate

three-dimensional structures

but rather than folding things by hand

we’ll bring the structure into the

computer and encode it as an algorithm

and in doing so we can suddenly fold

anything

we can fold a million times faster and

we can fold in hundreds and hundreds of

variations and as we’re seeking to make

something three-dimensional

we start not with a single surface but

with a volume a simple volume the cube

if we take its surfaces and fold them

again and again again and again then

after 16 iterations 16 steps we end up

with 400 000 surfaces and a shape that

looks for instance like this

and if we

change where we make the folds if we

change the folding ratio then this cube

turns into this one

we can change the folding ratio again to

produce this shape

or this shape

so we exert control over the form by

specifying the position of where we’re

making the fold but essentially you’re

looking at a folded cube

and we can play with this we can apply

different folding ratios to different

parts of the form to create local

conditions

we can begin to sculpt the form

and because we’re doing the folding in

the computer we are completely free of

any physical constraints so that means

that surfaces can intersect themselves

they can become impossibly small we can

make fools that we otherwise could not

make

surfaces can become porous

they can stretch they can tear

and all this expands the scope of forms

that we can produce

but in each case i didn’t design the

form i designed the process that

generated the form

in general if we make a small change to

the folding ratio which is what you’re

seeing here then the form

changes correspondingly

but that’s only half of the story

99.9 percent of the folding ratios

produce not this

but this

the geometric equivalent of noise

the forms that i showed before were made

actually through very long trial and

error a far more effective way to create

forms i’ve found is to use information

that is already contained in forms a

very simple form such as this one

actually contains a lot of information

that may not be visible to the human eye

so for instance we can plot the length

of the edges white surfaces have long

edges black ones have short ones we can

plot the planarity of the surfaces their

curvature

how radial they are all information that

may not be

instantly visible to you but that we can

bring out that we can articulate

and that we can use to control the

folding

so now i’m not specifying a single ratio

anymore to fold it but instead i’m

establishing a rule i’m establishing a

link between a property of a surface

and how that surface is folded

and because i’ve designed the process

and not the form i can run the process

again and again and again to produce a

whole family of forms

these forms look elaborate but the

process is a very minimal one there’s a

simple input it’s always a cube that i

start with and it’s a very simple

operation it’s making a fold

and doing this over and over again

so let’s bring this process to

architecture how and at what scale

i chose to design a column

columns are architectural archetypes

they’ve been used throughout history to

express ideals

about about beauty about technology

the challenge to me was how we could

express this new algorithmic order in a

column

i started using four cylinders through a

lot of experimentation these cylinders

eventually evolved

into this

and these columns they have information

at very many scales

we can begin to zoom into them

the closer one gets the more new

features one discovers

some formations are almost at the

threshold of human visibility

and unlike traditional architecture it’s

a single process that creates both the

overall form and the microscopic surface

detail

these forms are

undrawable

an architect who’s drawing them with a

pen and a paper would probably take

months or it would take even a year to

draw all the sections all of the

elevations you can only create something

like this through an algorithm

the more interesting question perhaps is

are these forms imaginable

usually an architect can somehow

envision the end state of what he is

designing

in this case the process is

deterministic there’s no randomness

involved at all

but it’s not entirely predictable

there’s too many surfaces

there’s too much detail one can’t see

the end state

so this leads to a new role for the

architect

one needs a new method to explore all of

the possibilities that are out there

for one thing

one can design many variants of the form

in parallel and one can cultivate them

and to go back to the analogy with

nature one can begin to think in terms

of populations one can talk about

permutations about generations

about crossing and breeding to come up

with a design

and the architect is really he moves

into the position of being an

orchestrator of all of these processes

but enough of the theory at one point i

i simply wanted to jump inside this

image so to say i bought these

red and blue 3d glasses kind of very

close to the screen but but still that

wasn’t the same as being able to to to

walk around and touch things so there

was only one possibility to to bring the

column out of the computer

there’s been a lot of talk now about

about 3d printing

for for me or for for my purpose at this

moment it’s

there’s still too much of an unfavorable

trade-off between scale

and um on the one hand and and

resolution and speed on the other

so instead we decided to take the column

and we decided to build as a layered

model made out of very many slices

thinly stacked over each other what

you’re looking at here is an x-ray of

the column that you just saw viewed from

the top

unbeknownst to me at the time

because we had only seen the outside the

surfaces were continuing to fold

themselves to grow on the inside of the

column

which was quite surprising discovery

from this shape we calculated a cutting

line

and then we gave this cutting line to a

laser cutter

to produce and you’re seeing a segment

of it here

very many thin slices individually cut

on top of each other

and this is a photo now it’s it’s not a

rendering and the column that we ended

up with after a lot of work ended up

looking remarkably like the one that we

had designed in the computer

almost all of the details almost all of

the surface intricacies were preserved

it was very labor-intensive

there’s a huge disconnect at the moment

still between the virtual

and the physical it took me several

months to design the column but

ultimately it takes the computer about

30 seconds to calculate all of the 16

million faces

the physical model on the other hand is

2 700 layers one millimeter thick it

weighs 700 kilos it’s made of sheet that

that can cover this entire auditorium

and the cutting path that the laser

followed goes from here

to the airport and back again

but it is increasingly possible machines

are getting faster it’s getting less

expensive and there’s some promising

technological developments just on the

horizon

these are images from the guangzhou

biennale and in this case i used abs

plastic to produce the columns we used a

bigger faster machine and they have a

steel core inside so they’re structural

they can bear loads for once

each column is effectively a hybrid of

two columns um you can see a different

column in the mirror if there’s a mirror

behind the column that creates a sort of

an optical illusion

so where does this leave us i think this

project gives us a glimpse of the unseen

objects that await us if we as

architects begin to think about

designing not the object but a process

to generate objects

i’ve shown one simple process that was

inspired by nature there there’s

countless other ones

in short we have no constraints

um instead we have processes in our

hands right now that allow us to create

structures at all scales that we

couldn’t even have dreamt up

and if i may add at one point we will

build them

thank you

you

作为一名建筑师,我经常问自己

,我们设计的形式的起源是

什么,

如果我们

不再使用参考文献,如果我们

没有偏见,如果我们没有先入为主,我们可以设计

什么样的形式? 如果我们

能从我们的

经验中

解脱出来,我们

会设计这些看不见的形式会是什么样子

他们会让我们感到惊讶 他们会

吸引我们

他们会不会让我们高兴

如果是这样,那么我们如何去创造

一些真正新的东西

我建议我们看自然

自然被称为最伟大

的形式建筑师

我不是说我们应该复制

自然我不是说我们应该模仿

生物学

而是我建议我们可以借用

自然的过程 可以抽象它们

并创造出新

自然的主要创造过程

形态发生是将一个

细胞分裂成两个细胞,这些细胞

可以是相同的,也可以是不同的

如果我们抽象这个过程并

尽可能地简化它,那么我们

可以通过不对称的细胞

分裂从彼此

开始 选择我们进行

折叠的位置

,通过这样做,

我们可以通过这个非常简单

的过程来区分表面

我们将手动将结构带入

计算机并将其编码为算法

,这样做我们可以突然折叠

任何

我们可以折叠一百万倍的东西,

我们可以折叠成数百种

变化,正如我们正在寻求的那样 做

一些三维的东西,

我们不是从一个单一的表面开始,而是

从一个简单的体积开始,

如果我们把它的表面

一次又一次地折叠起来,然后再向

后折叠,那么立方体 呃 16 次迭代 16 步我们最终

得到 400 000 个表面和一个

看起来像这样的形状

如果我们改变折叠的位置,如果我们

改变折叠率,那么这个立方体变成这个立方体,

我们可以再次改变折叠率

产生这种形状

或这种形状,

所以我们通过

指定我们正在折叠的位置来控制形状,

但基本上你正在

看一个折叠的立方体

,我们可以玩这个,我们可以将

不同的折叠比率应用于不同的

形状的一部分来创造局部

条件

我们可以开始雕刻形状

,因为我们在计算机中进行折叠,

我们完全没有

任何物理限制,这

意味着表面可以相互交叉,

它们可以变得非常小,我们可以

制作 否则我们无法

制作的傻瓜

表面会变得多孔

,可以拉伸,可以撕裂

,所有这些都扩大了我们可以生产的形式的范围,

但在每种情况下,我都没有设计

表格 我设计了一般

生成表格

的过程 如果我们对折叠率做一个小的改变,

这就是你在

这里看到的,那么表格

会相应地改变,

但这只是故事的一半

99.9% 的折叠率

不会产生

这不过

是噪音的几何等价

物 我之前展示的表格

实际上是通过非常长时间的反复试验制成的

我发现创建表格的一种更有效的方法是使用

表格中已经包含的信息 一个

非常简单的表格 因为这个

实际上包含很多

人眼可能看不到的信息,

所以例如我们可以绘制

边缘的长度 白色表面有长

边 黑色的有短边 我们可以

绘制表面的平面度 它们的

曲率

如何 径向它们都是您

可能无法

立即看到的信息,但我们可以

带出我们可以清晰表达

并且可以用来控制

折叠的信息,

所以现在我' 我不再指定单个比率

来折叠它,而是我正在

建立一个规则,我正在建立

一个表面的属性

和该表面如何折叠之间的联系

,因为我已经设计了过程

而不是我可以设计的形式

一次又一次地运行该过程以产生

一整套表格

这些表格看起来很复杂但是这个

过程是一个非常小的过程有一个

简单的输入它总是一个立方体,我

开始使用它是一个非常简单的

操作它正在折叠

和 一遍又一遍地这样做,

所以让我们把这个过程带到

建筑中 我选择如何以及在多大的比例

来设计柱子

柱子是建筑原型,

它们在整个历史中一直被用来

表达

关于技术的美的理想

对我的挑战是我们如何 可以

在一个列中表达这个新的算法顺序

我通过大量的实验开始使用四个圆柱体

这些圆柱体

最终演变

成这个

和这些列他们有信息

在很多尺度上,

我们可以开始放大它们

,越近,新特征就越多,

我们会发现

一些结构几乎

处于人类可见度的门槛

,与传统建筑不同,它是

一个单一的过程,既可以创造

整体形式,也可以创造微观表面

细节

这些表格是

无法绘制的 建筑师

用笔和纸来绘制

它们可能需要几个月甚至一年的时间来

绘制所有部分 所有的立面

你只能

通过算法创建这样

的东西 更有趣的问题

也许这些形式是可以想象的

通常建筑师可以以某种方式

设想他正在设计的最终状态

在这种情况下 过程是

确定性的 根本不

涉及随机性,

但它并不完全可预测

表面太多 细节太多无法做到

看到最终状态,

因此这为架构师带来了一个新角色,

需要一种新的方法来表达 了解所有

存在于一件事上的可能性,

一个人可以并行设计许多形式的变体

,一个人可以培养它们

,回到与自然的类比,

一个人可以开始从种群的角度思考,

可以谈论

排列 关于几代人

关于杂交和繁殖以

提出设计的故事

,而建筑师实际上是他进入

了所有这些过程的协调者的位置,

但是在某一点上足够的理论我

只是想跳进这个

图像可以这么说 我买了这些

红色和蓝色的 3d 眼镜,

离屏幕很近,但这

仍然与能够

四处走动和触摸东西不同,所以

只有一种可能性可以将

柱子从计算机中取出

现在有很多

关于 3d 打印

对我或我的目的的讨论,

目前在规模

和嗯之间仍然存在太多不利的权衡,一方面是 d

分辨率和速度在另一个方面,

所以我们决定采用色谱柱

,我们决定构建一个分层

模型,由许多薄片组成

,彼此薄薄地堆叠在一起,

您在这里看到的是色谱柱的 X 射线

你刚刚

从顶部

看到的,当时我不知道,

因为我们只看到外面的

表面继续折叠

自己在柱子的内侧生长,

这是非常令人惊讶的发现,

从这个形状我们计算了一条切割

线

和 然后我们把这条切割线交给

激光切割机

来生产,你在

这里看到它的一部分,

很多薄片单独

切割在一起

,这是一张照片,现在它不是

渲染图,我们结束的专栏

经过大量的工作最终

看起来非常像我们

在计算机中设计的那个

几乎所有的细节几乎所有

的表面错综复杂的东西都被保留了

这是非常劳动密集的

有一个 目前

虚拟

和物理之间仍然存在巨大的脱节,我花了

几个月的时间来设计柱子,但

最终计算机需要大约

30 秒来计算所有 1600

万个

面另一方面,物理模型是

2700 层 毫米厚它

重 700 公斤它是由

可以覆盖整个礼堂

的板材制成的,激光所遵循的切割路径

从这里

到机场再回来,

但机器越来越有可能

变得越来越快它越来越

便宜而且还有一些 即将到来的有希望的

技术发展

这些是来自广州

双年展的图片,在这种情况下,我使用 abs

塑料生产柱子,我们使用

更大更快的机器,它们内部有一个

钢芯,因此它们是结构性的,

它们可以承受一次载荷

每列实际上是两列的混合体

嗯,

如果 t 后面有镜子,你可以在镜子中看到不同的列

他的专栏创造了一种视

错觉,

所以这会给

我们带来什么?

已经展示了一个

受自然启发的简单过程 简而言之还有

无数其他过程

我们没有任何限制

嗯,相反,我们现在掌握了一些过程,这些过程

使我们能够创造

出我们甚至无法想象的各种规模的结构

如果我可以在某一点添加,我们将

建立它们,

谢谢