Can broken glass build a clean future

[Music]

what if there was something

in nature that could show us why and how

it’s possible to start reducing landfill

it’s now the year 2020 and

it’s even though we’re entering the most

advanced technological

decade of our human history it’s still

quite impossible

to consider a world with no landfill

and one mask asked why that is why

considering here where we stand

in nanoworld country no landfill and

sustainability

has been the norm for thousands of

generations

materials that we use in structures and

devices

and that we take for granted are all

human created

this includes things like plastic steel

and pretty much

anything else that you can think of

materials take a heck of a lot of energy

to produce

and are a big actually the biggest

strain

on our planet here you can see our earth

in its uh majestic glory and it’s

important to remember

that all the materials that we take for

granted the ingredients for them

actually come from earth and i think

it’s pretty fair to say

that the earth is a little bit fed up uh

with what’s been going on recently

in fact the biggest single users of

electricity

in new south wales victoria and

queensland

are metal producers hammering home our

silent but powerful expectations as a

society

in our expectations of what a materials

driven society

actually is our prolific use of

materials is so entrenched in the norm

of of our thinking and that’s largely

because there’s actually nobody alive on

the planet today

that hasn’t lived in a period where

materials are just thought of

as coming from a factory that

has created a mindset where it’s often

thought that there’s an infinite supply

of things in the basement of a factory

which is actually not the case and

actually just last week i heard someone

saying that anything you want

you can just get it from alibaba

so our uh the connection between our

tech driven

ambitions and the strain on the planet

is broken

and that’s a link that we now must

unbreak so how can one break the link

between

materials proliferation and the strain

on the planet

fortunately the last decade has seen

tremendous advances

that are now at a stage of advancement

where they can start to come together

there’s two particular things that i

want to concentrate on and the first of

those

is digital manufacturing in particular

additive manufacturing

otherwise known as 3d printing 3d

printing

has allowed us to start to think very

differently about

the way in which we use materials and

the type of materials that we use

in addition 3d printing is a bit more

like nature in that it

adds material instead of taking material

away to get to a final structure

so it genuinely is an additive process

secondly there’s automation and data

exchange

in manufacturing cyber physical systems

cloud computing

and the internet of things which have

rapidly accelerated in the past decade

and give us the ability to be object

oriented

advanced computing has allowed us to

help unlock

nature’s secrets with things like

generative design

and artificial intelligence being

tremendously important

i mentioned nature in those last couple

of examples

and i want to spend the rest of the the

talk today talking you through an

example

there’s been many a ted talk previously

uh discussing 3d printing and advanced

materials

so i thought i’d do something different

and talk about the greatest materials

designer ever

and that is mother nature she is very

very very smart

and also has about a billion years head

start on us all

so it’s important to pay attention to

her

what you see here is a naturally

occurring structure

known as venus’s flower basket this

structure is found

at the bottom of the pacific ocean in

the dark depths of

of at least a thousand meters below sea

level where there is no light whatsoever

and most typically this structure is

found depths

greater than 2000 meters below sea level

this structure is actually made out of

what you and i know as glass

which chemists and engineers know of as

silica

what’s really interesting about this

structure is it’s comprised in a very

unique geometry that exploits free space

and very detailed structural elements

it’s so special that uh its properties

are superior to that of steel

and in fact it’s much much more

lightweight considering what it’s been

made out of

so professor joanna eisenberg at the

weiss institute at harvard

uh has spent a big chunk of the last few

years trying to understand

this structure and she attributes the

various length scales in this structure

from nanometers right through to

millimeters and then exploiting free

space

to create structures over tens of

centimeters as holding the key to this

marvel and its phenomenal strength

what venus’s flower basket has allowed

us to do as engineers

is to challenge the way in which we

think about materials

it’s also showed us that we know very

little even though the year is 2020

but it’s also showed us the exceptional

promise that can come from

nature inspired biomimetic designs

a little bit closer to the surface of

earth

and glass is one of these materials

that’s been used for centuries

and interestingly i think it’s fair to

say that we

know very little about glass as a human

race

some things you may not know about glass

that are typified in these videos

is that when glass is very very thin or

in fine dimensions below about

20 microns so about a fifth of the

thickness of your of your hair

it can become infinitely flexible which

is really interesting because

that probably would have saved you a lot

of heartache when you were younger and

you were breaking things

the other interesting thing about glass

is when it’s in large dimensions

and you can see that video on the right

where it’s dropped from a great height

on a piece of steel

glass can actually be very tough now

tough is actually

toughness is an engineering quantity

that means the ability

to absorb energy so glass can be very

tough in large dimensions

and resist cracking so very very

interesting

uh material and i have to confess once

again that as a materials engineer we

don’t understand these properties very

well

other than knowing that they’re geometry

dependent

but then this poses the question can we

now take glass

and and use glass in a way that nature

does like venus’s flower basket

and put together geometric arrangements

that could potentially replace steel

now if you think about the way in which

we work with glass at the moment

things like glass blowing grinding and

cutting it’s certainly not going to cut

it

however welcome to 3d printing

and we crack the door open to industry

4.0

3d printing in the last decade has

really uh

had some very tremendous wins 3d

printing of polymers

and metals is now a commercial reality

and in fact companies like general

electric are using 3d printed metal

components

in aircraft bits at the moment and

companies like bmw are certainly using

3d printed polymeric components

in vehicles but 3d printing of glass has

remained at the bleeding edge and still

does

but fortunately there’s a few groups

that are giving it a red hot go

so some of the examples you see here are

from neri oxman’s group at the mit media

lab

the other one is the micron 3dp

swarovski collaboration in austria and

the one on the bottom left

is actually australia’s own but actually

canberra’s own

maple glass so what you see here

in spite of being very very hot

temperatures is actually really really

really cool

and the results are very promising so

what you see here is a selection

of things that have been uh created from

3d printing of glass

and you can see that there’s tremendous

opportunities in controlling dimensions

there’s also tremendous opportunities in

creating

infill and using free space as a design

variable as you can see in the middle

there

and that gets us one step closer to

nature

but what’s perhaps the most important is

the ability to

take a computationally generated design

turn that into a digital file and deploy

that

with great accuracy as you can see in

that example on the right

and that is is the very first important

step towards generative

design so what you see here may look

like a collection of widgets

but actually they’re not just widgets

they’re widgets full of promise

it’s no secret that australia like many

other countries is having

a a waste and a landfill crisis

our low value exports are now no longer

able to leave australia

and our systems of a circular economy

and recycling

are not yet up to the task however

next year in 2021 victoria will be one

of the first places on the world so the

state of victoria

to introduce a purple bin just for

glass recycling and glass only

so based on everything that you’ve now

learned about glass in the last four

minutes

what an opportunity and what an

opportunity this is

so just like perhaps in the jetsons

you could conceive a situation where you

have a glass printer

and in the top you could throw something

broken or something you want to discard

and crunch crunch crunch it would create

a computationally designed

value-added product with no further

strain on the planet

and no further energy implications on

the planet

and you actually see an example of that

on your right

where you can see a commodity glass

bottle that was broken

turning into something else with a

computational design

of infill and water tightness

certainly from the point of view of

materials design

we must be able to design things that

are damage resistant but when we can’t

do that

they need to be recyclable and when we

can’t do that

they we must do that and then when

required things must be recycled

absolutely no doubt that at this point

is the best hope that we have

in terms of trying to minimize the

proliferation and damage on the planet

now for those that are very astute

listeners you probably would have

realized where was the thousand degree

temperatures at the bottom of the

pacific ocean

making venus’s flower basket and it

turns out

that mother nature is always a step

ahead because venus’s flower basket

when it’s grown at the bottom of of of

the pacific ocean

is not like 3d printing where we layer

material

but it’s actually grown organically

with no light around mother nature is

able to take

parts of the sea water particularly

silicic

acid and turn that into silica so while

venus’s flower basket is on the bottom

of the pacific ocean

tethered to the ocean floor it is

actually a living creature and part of

anamalia

so there’s still a lot that we can learn

and a lot that we can learn

for bringing us one step closer to

nature

i am however optimistic because if there

was any evidence

that being one with nature was possible

it’s certainly here in australia where

the indigenous australians not only

achieved it

but they achieved it thousands of years

ago

my hope is that all of you now

young and old pay particular attention

to what things are made out of

as you now know there’s no infinite

supply of material

and there’s no trapdoor at a basement of

materials factories with an infinite

supply

my hope for the next decade is that

everything that we make

for human consumption comes from our

waste streams

the way in which we’re going to make

that possible is by leaning on industry

4.0

and advanced computation including

artificial intelligence

that will drive generative design and

help us mimic nature

much closer we have a multi-generational

and social contract with our planet and

i leave you with the message

that the future is clear so thank you

very much

and i hope you never look at a glass

bottle in the same way

[Applause]

[音乐

] 如果

自然界中有某种东西可以向我们展示为什么以及如何

开始减少垃圾填埋场

现在是 2020 年

,即使我们正在进入

人类历史上最先进的技术十年,但仍然

不太

可能 考虑一个没有垃圾填埋场的世界

和一个面具问为什么这就是为什么

考虑我们

在纳米世界国家的位置没有垃圾填埋场和

可持续性

已经成为

我们在结构和设备中使用的数千代材料的标准

,我们认为这些都是理所当然的

人类创造的

这包括诸如塑料钢之类的东西

以及几乎

所有你能想到的东西

材料需要大量的能量

来生产

,实际上是

我们星球上最大的压力在这里你可以看到我们的地球

在它的雄伟 荣耀,

重要的是要记住

,我们认为理所当然的所有材料

实际上都来自地球,我认为

这是公关 公平地说

,地球

对最近发生的事情有点厌倦了

,事实上

,新南威尔士州维多利亚州和

昆士兰州最大的单一电力用户

是金属生产商,他们将我们

作为一个社会的沉默而强烈的期望

对材料

驱动的社会的期望

实际上是我们对材料的大量使用

我们的思维规范中如此根深蒂固,这在很大程度上是

因为今天地球上实际上没有人

生活在一个

只考虑材料的时期

来自一家

创造了一种心态的工厂,人们通常

认为

工厂的地下室有无限的东西供应

,实际上并非如此,

实际上就在上周,我听到有人

说你想要的任何东西都

可以得到 它来自阿里巴巴,

所以我们的

技术驱动

野心与地球压力之间的联系

被打破了

,这是我们没有的联系 w 必须

打破,所以如何才能打破

材料扩散和地球压力

之间的联系,

幸运的是,过去十年已经看到

了巨大的进步

,现在正处于进步阶段

,它们可以开始融合在一起

,我想要做两件特别的事情

集中精力,其中第一个

是数字制造,特别是

增材制造,

也称为 3D 打印 3D

打印让我们开始

对我们使用材料的方式以及

我们

在 3D 打印之外使用的材料类型进行非常不同的思考 有点

像大自然,因为它

添加材料而不是带走材料

以获得最终结构,

因此它确实是一个附加过程,

其次

是制造网络物理系统中的自动化和数据交换,

云计算

和物联网正在

迅速发展 在过去十年中加速

并赋予我们成为

面向对象的

高级 com 的能力 puting 让我们能够

帮助解开

自然的秘密,

生成式设计

和人工智能等

非常重要的东西

我在最后几个例子中提到了自然

,我想在今天剩下的

演讲中通过一个例子告诉你

有很多 ted 之前谈论过

3d 打印和先进

材料,

所以我想我会做一些不同的事情

,谈论有史以来最伟大的材料

设计师

,这就是大自然,她非常

非常非常聪明

,并且比我们所有人都领先了大约 10 亿年

所以重要的是要注意

你在这里看到的是一个

自然形成的结构,

被称为维纳斯的花篮 这个

结构

位于太平洋底部,在

海平面以下至少一千米的黑暗深处,

那里有 没有任何光线

,最常见的是

在海平面以下 2000 米以上的深度发现

这个结构这个结构我 它实际上是由

你和我所知道的玻璃制成的

,化学家和工程师都知道它是

二氧化硅

这个结构真正有趣的

是它包含在一个非常

独特的几何结构中,利用了自由空间

和非常详细的结构元素

它是如此特别以至于它的特性

优于钢

,事实上,

考虑到它是由什么制成的,它的重量要轻得多

所以哈佛大学

魏斯研究所的乔安娜·

艾森伯格教授在过去几年里花了很大一部分

时间试图理解

这种结构,她认为

这个结构中的各种长度尺度

从纳米到

毫米,然后利用自由

空间创建超过数十

厘米的结构,这是实现这一

奇迹及其惊人

强度的关键,金星的花篮让

我们作为

工程师能够挑战 我们

思考

材料的方式也表明我们对材料

知之甚少 虽然今年是 2020 年,

但它也向我们展示了

来自

自然启发

的仿生设计的非凡承诺

我们

对作为人类的玻璃知之甚少

这些视频中典型的关于玻璃的一些你可能不知道的事情

是,当玻璃非常薄或

小于约 20 微米的精细尺寸时,大约

是你的厚度的五分之一 你的

头发可以变得无限柔韧,

这真的很有趣,因为

这可能会

在你年轻的时候为你省去很多心痛,

你正在打破

东西 关于玻璃的另一个有趣的事情

是当它在大尺寸时

,你可以看到那个视频 在右边

,它从高处掉到

一块钢

玻璃上实际上可能非常坚韧,现在

坚韧实际上是

坚韧是工程 ng 数量

,这意味着

吸收能量的能力,因此玻璃

在大尺寸上可以非常坚韧

并且可以抵抗开裂,所以非常非常

有趣的

材料,我不得不

再次承认,作为一名材料工程师,

我们不太了解这些特性,

除了 知道它们取决于几何形状,

但这提出了一个问题,我们现在是否可以

采用玻璃并以大自然喜欢金星的花篮的方式使用玻璃

,并将几何排列组合在一起

如果你考虑一下现在可能取代钢铁的方式

目前我们与玻璃一起使用的

东西,比如玻璃吹制研磨和

切割,它肯定不会切割

它,

但是欢迎使用 3d 打印

,我们打开了工业 4.0 的大门

,在过去的十年里,3d 打印

确实

取得了一些非常巨大的胜利

聚合物

和金属的 3D 打印现已成为商业现实

,事实上,通用

电气等公司正在使用 3D 打印金属

部件

目前在飞机钻头中,

像宝马这样的公司肯定会在车辆中使用

3D 打印聚合物组件

,但玻璃的 3D 打印

仍然处于最前沿,并且仍然

如此,

但幸运的是

,有一些团体正在热火朝天,

所以一些 你在这里看到的例子

来自麻省理工学院媒体实验室的 neri oxman 小组,

另一个是在奥地利的 micron 3dp

施华洛世奇合作,

左下角的那个

实际上是澳大利亚自己的,但实际上是

堪培拉自己的

枫木玻璃,尽管如此,你在这里看到的

非常非常热的

温度实际上真的非常

非常酷

,结果非常有希望,所以

你在这里看到的是一些用

3D 打印玻璃制成的东西

,你可以看到

在控制尺寸方面

有巨大的机会 正如您在中间看到的那样,在

创建

填充和使用自由空间作为设计

变量方面也

有巨大的机会

, 这让我们离自然更近了一步,

但也许最重要的

是能够

将计算生成的设计

转换为数字文件并

以极高的准确性进行部署,如您

在右侧的示例中所见

,那就是 迈向生成式设计的第一个重要

步骤,

所以你在这里看到的可能看起来

像一个小部件的集合,

但实际上它们不仅仅是小部件,

它们是

充满希望的小部件 危机

我们的低价值出口现在不再

能够离开澳大利亚

,我们的循环经济

和回收

系统还没有完成任务,但是

明年到 2021 年,维多利亚州将成为世界

上最早的地方之一,因此

维多利亚州

根据您在过去四分钟内所了解的有关玻璃的所有知识,介绍一个仅用于玻璃回收和玻璃的紫色垃圾桶,这

是一个多么好的机会和什么

这就像在jetsons中一样,

你可以设想这样一种情况,你

有一台玻璃打印机

,在顶部你可以扔掉一些

破碎的东西或者你想丢弃的东西,

然后嘎吱嘎吱嘎吱嘎吱嘎吱嘎吱它会创造

一个计算设计的

价值- 添加的产品不会

对地球造成进一步的压力

,也不会对地球产生进一步的能源影响

,您实际上

在您的右侧

看到了一个示例,您可以看到一个商品

玻璃瓶被打破

变成其他东西,并通过

填充和计算设计 水密性

当然从材料设计的角度来看,

我们必须能够设计出

抗损坏的东西,但是当我们不能

做到时,

它们需要可回收,而当我们

不能做到时,

我们必须这样做,然后 当

需要时,必须绝对回收东西,

毫无疑问,在这一点

上,我们最大的希望是

尽量

减少对 现在的星球

对于那些非常精明的

听众来说,你可能已经

意识到太平洋底部的千度

温度在哪里

制造了金星的花篮,

事实证明

,大自然总是

领先一步,因为当金星的花篮

在 生长在太平洋

底部不像 3D 打印,我们将材料分层,

但它实际上是有机生长的

,周围没有光线,大自然

能够吸收

部分海水,特别是

硅酸并将其转化为

二氧化硅 花篮位于太平洋的底部

系在海底,它

实际上是一种生物,也是 anamalia 的一部分,

所以我们还有很多东西可以学习

,我们可以学习很多东西

,让我们更接近

自然

i 然而我很乐观,因为如果

有任何证据

表明与自然融为一体是可能的,

那肯定是在澳大利亚,那里

的土著 澳大利亚人不仅做到

了,

而且他们在数千

年前就做到了

无限供应的材料工厂的地下室

我对未来十年的希望是,

我们

为人类消费而制造的一切都来自我们的

废物流

,我们要让这成为

可能的方式是依靠工业

4.0

和先进的计算,包括

人工智能将推动生成式设计并

帮助

我们更接近

地模仿自然 同理一个玻璃瓶

[鼓掌]