The selfassembling computer chips of the future Karl Skjonnemand

Computers used to be as big as a room.

But now they fit in your pocket,

on your wrist

and can even be implanted
inside of your body.

How cool is that?

And this has been enabled
by the miniaturization of transistors,

which are the tiny switches
in the circuits

at the heart of our computers.

And it’s been achieved
through decades of development

and breakthroughs
in science and engineering

and of billions of dollars of investment.

But it’s given us
vast amounts of computing,

huge amounts of memory

and the digital revolution
that we all experience and enjoy today.

But the bad news is,

we’re about to hit a digital roadblock,

as the rate of miniaturization
of transistors is slowing down.

And this is happening
at exactly the same time

as our innovation in software
is continuing relentlessly

with artificial intelligence and big data.

And our devices regularly perform
facial recognition or augment our reality

or even drive cars down
our treacherous, chaotic roads.

It’s amazing.

But if we don’t keep up
with the appetite of our software,

we could reach a point
in the development of our technology

where the things that we could do
with software could, in fact, be limited

by our hardware.

We’ve all experienced the frustration
of an old smartphone or tablet

grinding slowly to a halt over time

under the ever-increasing weight
of software updates and new features.

And it worked just fine
when we bought it not so long ago.

But the hungry software engineers
have eaten up all the hardware capacity

over time.

The semiconductor industry
is very well aware of this

and is working on
all sorts of creative solutions,

such as going beyond transistors
to quantum computing

or even working with transistors
in alternative architectures

such as neural networks

to make more robust
and efficient circuits.

But these approaches
will take quite some time,

and we’re really looking for a much more
immediate solution to this problem.

The reason why the rate of miniaturization
of transistors is slowing down

is due to the ever-increasing complexity
of the manufacturing process.

The transistor used to be
a big, bulky device,

until the invent of the integrated circuit

based on pure crystalline silicon wafers.

And after 50 years
of continuous development,

we can now achieve
transistor features dimensions

down to 10 nanometers.

You can fit more than
a billion transistors

in a single square millimeter of silicon.

And to put this into perspective:

a human hair is 100 microns across.

A red blood cell,
which is essentially invisible,

is eight microns across,

and you can place 12 across
the width of a human hair.

But a transistor, in comparison,
is much smaller,

at a tiny fraction of a micron across.

You could place more than 260 transistors

across a single red blood cell

or more than 3,000 across
the width of a human hair.

It really is incredible nanotechnology
in your pocket right now.

And besides the obvious benefit

of being able to place more,
smaller transistors on a chip,

smaller transistors are faster switches,

and smaller transistors are also
more efficient switches.

So this combination has given us

lower cost, higher performance
and higher efficiency electronics

that we all enjoy today.

To manufacture these integrated circuits,

the transistors are built up
layer by layer,

on a pure crystalline silicon wafer.

And in an oversimplified sense,

every tiny feature
of the circuit is projected

onto the surface of the silicon wafer

and recorded in a light-sensitive material

and then etched through
the light-sensitive material

to leave the pattern
in the underlying layers.

And this process has been
dramatically improved over the years

to give the electronics
performance we have today.

But as the transistor features
get smaller and smaller,

we’re really approaching
the physical limitations

of this manufacturing technique.

The latest systems
for doing this patterning

have become so complex

that they reportedly cost
more than 100 million dollars each.

And semiconductor factories
contain dozens of these machines.

So people are seriously questioning:
Is this approach long-term viable?

But we believe we can do
this chip manufacturing

in a totally different
and much more cost-effective way

using molecular engineering
and mimicking nature

down at the nanoscale dimensions
of our transistors.

As I said, the conventional manufacturing
takes every tiny feature of the circuit

and projects it onto the silicon.

But if you look at the structure
of an integrated circuit,

the transistor arrays,

many of the features are repeated
millions of times.

It’s a highly periodic structure.

So we want to take advantage
of this periodicity

in our alternative
manufacturing technique.

We want to use self-assembling materials

to naturally form the periodic structures

that we need for our transistors.

We do this with the materials,

then the materials do the hard work
of the fine patterning,

rather than pushing the projection
technology to its limits and beyond.

Self-assembly is seen in nature
in many different places,

from lipid membranes to cell structures,

so we do know it can be a robust solution.

If it’s good enough for nature,
it should be good enough for us.

So we want to take this naturally
occurring, robust self-assembly

and use it for the manufacturing
of our semiconductor technology.

One type of self-assemble material –

it’s called a block co-polymer –

consists of two polymer chains
just a few tens of nanometers in length.

But these chains hate each other.

They repel each other,

very much like oil and water
or my teenage son and daughter.

(Laughter)

But we cruelly bond them together,

creating an inbuilt
frustration in the system,

as they try to separate from each other.

And in the bulk material,
there are billions of these,

and the similar components
try to stick together,

and the opposing components
try to separate from each other

at the same time.

And this has a built-in frustration,
a tension in the system.

So it moves around, it squirms
until a shape is formed.

And the natural self-assembled shape
that is formed is nanoscale,

it’s regular, it’s periodic,
and it’s long range,

which is exactly what we need
for our transistor arrays.

So we can use molecular engineering

to design different shapes
of different sizes

and of different periodicities.

So for example, if we take
a symmetrical molecule,

where the two polymer chains
are similar length,

the natural self-assembled
structure that is formed

is a long, meandering line,

very much like a fingerprint.

And the width of the fingerprint lines

and the distance between them

is determined by the lengths
of our polymer chains

but also the level of built-in
frustration in the system.

And we can even create
more elaborate structures

if we use unsymmetrical molecules,

where one polymer chain
is significantly shorter than the other.

And the self-assembled structure
that forms in this case

is with the shorter chains
forming a tight ball in the middle,

and it’s surrounded by the longer,
opposing polymer chains,

forming a natural cylinder.

And the size of this cylinder

and the distance between
the cylinders, the periodicity,

is again determined by how long
we make the polymer chains

and the level of built-in frustration.

So in other words, we’re using
molecular engineering

to self-assemble nanoscale structures

that can be lines or cylinders
the size and periodicity of our design.

We’re using chemistry,
chemical engineering,

to manufacture the nanoscale features
that we need for our transistors.

But the ability
to self-assemble these structures

only takes us half of the way,

because we still need
to position these structures

where we want the transistors
in the integrated circuit.

But we can do this relatively easily

using wide guide structures that pin down
the self-assembled structures,

anchoring them in place

and forcing the rest
of the self-assembled structures

to lie parallel,

aligned with our guide structure.

For example, if we want to make
a fine, 40-nanometer line,

which is very difficult to manufacture
with conventional projection technology,

we can manufacture
a 120-nanometer guide structure

with normal projection technology,

and this structure will align three
of the 40-nanometer lines in between.

So the materials are doing
the most difficult fine patterning.

And we call this whole approach
“directed self-assembly.”

The challenge with directed self-assembly

is that the whole system
needs to align almost perfectly,

because any tiny defect in the structure
could cause a transistor failure.

And because there are billions
of transistors in our circuit,

we need an almost
molecularly perfect system.

But we’re going to extraordinary measures

to achieve this,

from the cleanliness of our chemistry

to the careful processing
of these materials

in the semiconductor factory

to remove even the smallest
nanoscopic defects.

So directed self-assembly
is an exciting new disruptive technology,

but it is still in the development stage.

But we’re growing in confidence
that we could, in fact, introduce it

to the semiconductor industry

as a revolutionary new
manufacturing process

in just the next few years.

And if we can do this,
if we’re successful,

we’ll be able to continue

with the cost-effective
miniaturization of transistors,

continue with the spectacular
expansion of computing

and the digital revolution.

And what’s more, this could even
be the dawn of a new era

of molecular manufacturing.

How cool is that?

Thank you.

(Applause)

电脑曾经有一个房间那么大。

但现在它们可以放在你的口袋里、

手腕上

,甚至可以植入
你的体内。

多么酷啊?


得益于晶体管的小型化,晶体管

是我们计算机核心电路中的微小开关。

它是
通过科学和工程领域数十年的发展

和突破

以及数十亿美元的投资实现的。

但它为我们提供了
大量的计算、

大量的内存


我们今天都体验和享受的数字革命。

但坏消息是,

我们即将遇到数字障碍,

因为晶体管的小型化速度
正在放缓。

这发生

我们的软件创新
不断

通过人工智能和大数据进行的同时。

我们的设备定期执行
面部识别或增强我们的现实

,甚至在
我们危险、混乱的道路上驾驶汽车。

太奇妙了。

但是,如果我们
跟不上软件的需求,

我们可能会
在技术发展中达到一个点,

即我们可以
用软件做的事情实际上会

受到硬件的限制。

我们都经历
过旧智能手机或平板电脑


软件更新和新功能不断增加的重量下随着时间慢慢停止运转的挫败感。

当我们不久前购买它时,它工作得很好。

但随着时间的推移,饥渴的软件工程师
已经吃光了所有的硬件容量

半导体行业
非常清楚这一点

,并且正在研究
各种创造性的解决方案,

例如超越晶体管
到量子计算

,甚至
在神经网络等替代架构中使用晶体管

来制造更强大
和更高效的电路。

但是这些方法
需要相当长的时间

,我们真的在寻找更
直接的解决方案来解决这个问题。

晶体管小型化速度放缓

的原因在于制造过程的日益复杂

在基于纯晶体硅晶片的集成电路发明之前,晶体管曾经是
一个大而笨重的设备

并且经过 50 年
的不断发展,

我们现在可以实现
晶体管特征尺寸

低至 10 纳米。

您可以

在一个平方毫米的硅片中安装超过 10 亿个晶体管。

从这个角度来看:

一根人的头发有 100 微米宽。

一个
基本上不可见的红细胞

有 8 微米宽

,你可以在
一根头发丝的宽度上放置 12 个。

但相比之下,晶体管
要小得多,

只有一微米的一小部分。

您可以

在单个红细胞上放置 260 多个晶体管,

或者在
一根头发丝的宽度上放置 3,000 多个晶体管。

现在,您口袋里的纳米技术确实令人难以置信。

除了能够在芯片上放置更多、
更小晶体管的明显好处之外,

更小的晶体管是更快的开关,

更小的晶体管也是
更高效的开关。

因此,这种组合为我们提供了我们今天都喜欢的

更低成本、更高性能
和更高效率的电子产品

为了制造这些集成电路

,晶体管是

在纯晶体硅晶片上逐层构建的。

简单地说,电路的

每一个微小
特征都被投射

到硅晶片的表面上,

并记录在光敏材料中

,然后通过光敏材料进行蚀刻,从而

在底层留下图案。

多年来,这一过程得到了
显着改进,

以提供
我们今天所拥有的电子性能。

但随着晶体管的特性
越来越小,

我们确实正在接近

这种制造技术的物理限制。

进行这种图案化的最新系统

已经变得非常复杂

,据报道,它们
每台的成本超过 1 亿美元。

半导体工厂
拥有数十台这样的机器。

所以人们在认真质疑
:这种方法长期可行吗?

但我们相信,我们可以

使用分子工程

在晶体管的纳米尺度上模仿自然,以一种完全不同且更具成本效益的方式制造这种芯片

正如我所说,传统制造方法
将电路的每一个微小特征都

投射到硅片上。

但是如果你看一下集成电路的结构

,晶体管阵列,

许多特征会重复
数百万次。

这是一个高度周期性的结构。

所以我们想

在我们的替代
制造技术中利用这种周期性。

我们希望使用自组装

材料自然形成晶体管所需的周期性结构

我们用材料来做这件事,

然后材料做
精细图案的艰苦工作,

而不是把投影
技术推向极限和超越。

自组装在自然界
中的许多不同地方都可以看到,

从脂质膜到细胞结构,

因此我们知道它可以成为一种强大的解决方案。

如果它对大自然足够好,
它对我们也应该足够好。

因此,我们希望利用这种自然
发生的、强大的自组装

并将其用于
制造我们的半导体技术。

一种自组装材料

——称为嵌段共聚物——

由两条
长度仅为几十纳米的聚合物链组成。

但这些连锁店互相憎恨。

它们相互排斥

,就像油和水
或我十几岁的儿子和女儿一样。

(笑声)

但是我们残忍地将它们结合在一起,在系统中

制造了一种内在的
挫败感,

因为它们试图彼此分离。

在散装材料中,
有数十亿个

,相似的成分
试图粘在一起,

而相反的成分
试图同时相互分离

这有一种内在的挫败感,
一种系统的紧张感。

所以它四处移动,它蠕动
直到形成一个形状。

形成的自然自组装
形状是纳米级的,

它是规则的,它是周期性的
,它是长距离的,

这正是
我们晶体管阵列所需要的。

所以我们可以利用分子工程

来设计
不同大小

、不同周期的不同形状。

因此,例如,如果我们
采用对称分子,

其中两条聚合物链
的长度相似,形成

的自然自组装
结构

是一条长长的曲折线,

非常像指纹。

指纹线的宽度

和它们之间的

距离由
我们的聚合物链的长度以及系统

中内置的挫败程度决定

如果我们使用不对称分子,我们甚至可以创建
更精细的结构

其中一个聚合物
链明显短于另一个。

在这种情况下形成的自组装结构

是较短的链
在中间形成一个紧密的球

,它被较长的
相对的聚合物链包围,

形成一个自然的圆柱体。

这个圆柱体的大小和圆柱体

之间的距离
,即周期性

,再次取决于
我们制造聚合物链的时间长短

和内在挫折的程度。

换句话说,我们正在使用
分子

工程来自组装纳米级结构

,这些结构可以是
我们设计的尺寸和周期性的线或圆柱体。

我们正在使用化学、
化学工程

来制造
我们的晶体管所需的纳米级特征。

但是
自组装这些结构的能力

只完成了一半,

因为我们仍然
需要将这些结构

放置在我们想要
集成电路中晶体管的位置。

但是我们可以相对容易地做到这一点,

使用
固定自组装结构的宽引导结构,

将它们锚定到位

并迫使
其余自组装

结构平行放置,

与我们的引导结构对齐。

例如,如果我们要
制作精细的 40 纳米线,

这很难
用传统的投影技术制造,我们可以用普通的投影技术

制造 120 纳米的引导结构

,这种结构将对齐
40 条中的三个 - 纳米线之间。

所以材料正在
做最困难的精细图案化。

我们称这整个方法为
“定向自组装”。

定向自组装的挑战

在于整个系统
需要几乎完美对齐,

因为结构中的任何微小缺陷
都可能导致晶体管故障。

而且因为
我们的电路中有数十亿个晶体管,

我们需要一个几乎
分子完美的系统。

但我们将采取非同寻常的措施

来实现这一目标,

从我们的化学清洁度

到半导体工厂
对这些材料的仔细加工,

以消除即使是最小的
纳米级缺陷。

因此,定向自组装
是一项令人兴奋的新颠覆性技术,

但仍处于开发阶段。

但我们越来越有信心
,事实上,我们可以在未来几年内将其

作为一种革命性的新
制造工艺引入半导体行业

如果我们能做到这一点,
如果我们成功了,

我们将能够继续进行

具有成本效益
的晶体管小型化,

继续
进行计算

和数字革命的惊人扩张。

更重要的是,这甚至
可能

是分子制造新时代的曙光。

多么酷啊?

谢谢你。

(掌声)