What is deep tech A look at how it could shape the future Antoine Gourvitch

Transcriber: Leslie Gauthier
Reviewer: Joanna Pietrulewicz

In this research lab,

I discovered a story
that is swiftly changing our world.

A story that has the power to change
the way we produce material,

the way we eat

and the way we heal.

It is the story of deep tech.

Deep tech is a new chapter
in the innovation story,

bringing together science,
engineering and design thinking.

Imagine if another global pandemic happens

and the drug to combat it was developed

and approved not in decades or years,

but in months or even in weeks.

Deep tech offers this potential.

Imagine technologies like robotics,

synthetic biology,

nanomaterial,

blockchain,

quantum computing

and many others –

when combined with each other

and blended with engineering
and design science,

are making what’s seemingly
impossible possible.

So what is deep tech?

I’ve spent the last 18 months
visiting 100 research labs

and start-ups

from Shenzhen in China to Haifa in Israel,

and this is what I learned
about deep tech ventures.

They focus on fundamental issues,

identifying physical constraints
of industries not solved for decades.

For example,

in energy, nuclear fusion;

in mobility, air robotaxi.

They work as a close hub
of emerging technologies.

Like synthetic biology,

quantum programming,

artificial intelligence

and many others,

they focus on physical product
using data and digital platform

to accelerate the test-and-run phase.

They rely on an ecosystem
to accelerate the innovation cycle,

including the build-and-test phase.

Too many disciplines are necessary
to master for one venture to go alone.

It is about cooperation,

not competition.

Deep tech is ultimately
transforming discovery

into a design and engineering exercise.

So …

why does it matter?

It matters because it is happening now,

all around us,

ongoing.

This approach is changing
what was once considered impossible

into something actively possible today.

Take SpaceX,

a deep tech pioneer

who disrupted the aerospace industry

by producing reusable
rockets and spaceships,

reducing the cost of going to space
by a factor of 10.

They achieved this by combining
advanced materials

and chemicals developed
in the last 20 years

with vertical integration

and the modular approach
of modern software engineering.

Or PASQAL,

the start-up founded by several students
of my friend, Alain Aspect,

creatively using fundamental physics
combined with software engineering

and data science

to create an analog quantum processor.

Or take Boston-based Ginkgo Bioworks

founded by internet pioneer Tom Knight
and a group of MIT scientists.

A visit to Ginkgo showed me a lab
I had never seen before.

I saw a fully automated bioworks lab

with the latest robotic techniques,

allowing to test thousands
of biological designs.

They achieved this by building
the largest internal metagenomics database

of cells, enzymes and genetic programming

by combining robotics,

protein design,

both in microorganism

and mammalian cells

and data science.

They have built
a cell programming platform

able to create nearly
any organism they want

by converging science,

technology

and data and digital platform

then to become the Amazon
web services of biology,

letting start-ups and other
companies use their facilities.

This is a perfect example
of the ecosystem operating.

So right now many of you may be thinking,

how do we manage the technological risk?

Will investors be ready
to play the deep tech game?

Yes, there is a technological risk.

And developing deep tech requires
to rethink our innovation approach.

I have seen that four rules
govern successful deep tech ventures.

Rule number one:

be problem oriented,

not technology focused.

This is very important.

Many deep tech ventures start
with a solution in search of a problem.

Ginkgo partnered with Bayer
to solve the nitrogen fertilizer issue.

Nitrogen is the most-used fertilizer
in the world today.

But it produces three percent
of greenhouse gases

and it pollutes water.

Many start-ups today
are trying to solve this issue

by applying their solutions.

Ginkgo tried to solve it
by asking the question in another way:

what if instead of producing nitrogen,

we create a bacteria
that use existing nitrogen

to fixate it on the roots of the plants,

just like nature does?

Rule number two:

it is about combining,
intersecting, converging.

So you need to bring
a cross-disciplinary team early on

and play the ecosystem.

What does that mean concretely?

Take Commonwealth Fusion Systems,

an energy venture focusing
on nuclear fusion.

They achieved their breakthrough
in nuclear fusion

by combining advances
in material and data science

that enabled them to do
calculation and simulation

that was simply not doable
a few years back.

And they play the ecosystem very well.

Corporates like ENI and Equinor
have invested early on.

Universities like the MIT
Plasma Science and Fusion Centers

are actively collaborating with them.

VCs like Breakthrough
Energy Ventures and others,

are supporting them,

and the US government
seems interested in working with them.

Rule number three:

adopt a design thinking approach
powered by deep tech.

Identify assumptions early on to be tested

to reduce the risk up front.

Get to a working prototype
as quickly as possible.

Anticipate friction points
at each stage of the innovation cycle.

Use a data and digital platform

to reduce the cost of testing them.

Lilium Aviation,

a deep tech start-up
building all-electric air taxi,

aiming at solving urban air mobility,

has started by developing
a two-seater prototype,

then a five-seater using
real-time data of every flight

to design the next version.

Rule number four:

adopt a design-to-cost approach.

Merging science with engineering
requires to have the economics in mind

all the time.

Zymergen,

another synthetic biology lighthouse,

whenever they design a product,

use a ruthless design-to-cost approach.

In the design phase,

even before production starts,

they look for the right products
at the right costs

with the right parameters.

Zymergen developed Hyaline

a transparent, printable
circuit for electronics,

produced by fermentation.

And this biobased film is cheaper

and has better properties
than the existing one,

petroleum-based.

Deep tech is maturing quickly now.

In 2019, there were more
than 5,000 deep tech ventures

fueled by 50 billion dollars
of investors and their money.

Ventures coming out of research labs

have the power to solve
our most pressing issues.

Think what you would like
to grow in your world.

Consider how might deep tech
help you cultivate that thing,

maybe by accelerating a drug development

or by eliminating greenhouse gases

or perhaps by solving the congestion
problem plaguing your city.

Deep tech is an ever-growing
opportunity in front of us,

waiting to be scaled
for this world and more.

It is the next chapter
in the innovation story,

and today I invite all of you
to join me in its creation.

Thank you.

抄写员:Leslie Gauthier
审稿人:Joanna Pietrulewicz

在这个研究实验室,

我发现了一个
正在迅速改变我们世界的故事。

这个故事有能力
改变我们生产材料

的方式、我们的

饮食方式和我们的治疗方式。

这是深度科技的故事。

深度科技
是创新故事的新篇章,

将科学、
工程和设计思维结合在一起。

想象一下,如果另一场全球大流行发生,

并且对抗它的药物

不是在几十年或几年内开发和批准,

而是在几个月甚至几周内得到批准。

深科技提供了这种潜力。

想象一下机器人技术、

合成生物学、

纳米材料、

区块链、

量子计算

和许多其他技术——

当它们相互结合

并与工程
和设计科学相结合时,

正在使看似
不可能的事情成为可能。

那么什么是深科技?

在过去的 18 个月里,我
参观了从中国深圳到以色列海法的 100 家研究实验室

和初创企业

,这就是我
对深度科技企业的了解。

他们专注于基本问题,

确定
数十年来未解决的行业的物理限制。

例如,

在能源、核聚变方面;

在机动性方面,空中机器人出租车。

它们是新兴技术的紧密枢纽

与合成生物学、

量子编程、

人工智能

等许多其他领域一样,

他们专注于
使用数据和数字

平台加速测试和运行阶段的物理产品。

他们依靠生态系统
来加速创新周期,

包括构建和测试阶段。

要想独自创业,需要掌握太多的学科。

这是关于合作,

而不是竞争。

深科技最终
将发现

转化为设计和工程实践。

所以……

这有什么关系?

这很重要,因为它现在正在发生,

在我们周围,

正在进行中。

这种方法正在将
曾经被认为不可能

的事情变成今天积极可能的事情。

以深科技

先驱 SpaceX 为例,他

通过生产可重复使用的
火箭和宇宙飞船颠覆了航空航天业

,将进入太空的成本
降低了 10 倍。

他们通过将过去 20 年

开发的先进材料和化学品

与垂直整合相结合来实现这一目标

以及
现代软件工程的模块化方法。

或者 PASQAL,

这家初创公司由
我朋友 Alain Aspect 的几个学生创立,

创造性地将基础物理学
与软件工程

和数据科学

相结合,创建了一个模拟量子处理器。

或者

以互联网先驱 Tom Knight
和麻省理工学院的一群科学家创立的波士顿 Ginkgo Bioworks 为例。

对 Ginkgo 的访问向我展示了一个
我以前从未见过的实验室。

我看到了一个

具有最新机器人技术的全自动生物工程实验室,

可以测试数千
种生物设计。

他们通过将微生物和哺乳动物细胞中的机器人技术、蛋白质设计和数据科学相结合,建立
了最大

的细胞、酶和遗传编程内部宏基因组学数据库,从而实现了这一目标

他们建立
了一个细胞编程平台,

能够

通过融合科学、

技术

和数据以及数字平台来创造几乎任何他们想要的有机体,

然后成为亚马逊
的生物学网络服务,

让初创企业和其他
公司使用他们的设施。


是生态系统运作的完美例子。

所以现在你们中的许多人可能在想,

我们如何管理技术风险?

投资者会准备
好参与深度科技游戏吗?

是的,存在技术风险。

开发深度技术需要
重新思考我们的创新方法。

我已经看到,
成功的深度科技企业有四项规则。

规则一:

以问题为导向,

而不是以技术为中心。

这是非常重要的。

许多深度科技企业从
寻找问题的解决方案开始。

银杏与拜耳
合作解决氮肥问题。

氮是当今世界上使用最多的肥料

但它产生了百分之三
的温室气体

,而且污染了水。

今天,许多初创企业
都试图

通过应用他们的解决方案来解决这个问题。

银杏试图
通过另一种方式来解决这个问题

:如果我们不产生氮,

而是创造一种细菌
,利用现有的

氮将其固定在植物的根部,

就像大自然一样?

规则二:

它是关于结合、
相交、收敛。

因此,您需要
尽早组建一支跨学科团队

并发挥生态系统的作用。

这具体是什么意思?

以 Commonwealth Fusion Systems 为例,这

是一家专注于核聚变的能源企业

他们

通过结合
材料和数据科学的进步实现了核聚变方面的突破

,使他们能够进行几年前根本无法进行的
计算和模拟

他们很好地发挥了生态系统的作用。

ENI 和 Equinor
等公司很早就进行了投资。

麻省理工学院
等离子体科学与融合中心等大学

正在积极与他们合作。

Breakthrough
Energy Ventures 等风险投资公司

正在支持他们

,美国政府
似乎有兴趣与他们合作。

规则三:

采用由深度技术驱动的设计思维方法。

尽早确定要测试的假设,以预先

降低风险。

尽快获得工作原型

预测
创新周期每个阶段的摩擦点。

使用数据和数字平台

来降低测试成本。

Lilium Aviation 是

一家

致力于解决城市空中交通问题的全电动空中出租车的深度科技初创公司,

它首先开发
了一个两座原型,

然后是一个五座原型,
利用每次飞行的实时数据

来设计下一个 版本。

规则四:

采用按成本设计的方法。

将科学与工程相结合
需要

始终牢记经济学。

Zymergen,

另一个合成生物学灯塔,

每当他们设计产品时,都会

使用无情的设计成本方法。

在设计阶段,

甚至在生产开始之前,

他们就
以合适的成本

和合适的参数寻找合适的产品。

Zymergen 开发了 Hyaline

一种透明的、可印刷
的电子电路,

通过发酵生产。

而且这种生物基薄膜比现有的石油基薄膜更便宜

,性能更好

深科技现在正在迅速成熟。

2019 年,

500 亿美元
的投资者和他们的资金推动了 5000 多家深科技企业。

来自研究实验室的风险投资

有能力解决
我们最紧迫的问题。

想想你想
在你的世界里成长什么。

考虑一下深度技术如何
帮助您培养这种东西,

可能是通过加速药物开发

或消除温室气体,

或者可能通过解决
困扰您城市的拥堵问题。

深科技是
摆在我们面前的一个不断增长的机会,

等待着
为这个世界和更多的东西而扩展。


是创新故事的下一章

,今天我邀请大家
加入我的创作。

谢谢你。