When will the next ice age happen Lorraine Lisiecki

Twenty thousand years ago,

the Earth was a frigid landscape where
woolly mammoths roamed.

Huge ice sheets,
several thousand meters thick,

encased parts of North America,
Asia, and Europe.

We commonly know it as the “Ice Age.”

But geologists call it
the Last Glacial Maximum.

That’s because it’s the most recent
time that ice reached such a huge extent,

and “ice age” is an informal term
without a single agreed-upon definition.

Over the last million years,

there have actually been
about 10 different glacial maxima.

Throughout Earth’s history,
climate has varied greatly.

For hundreds of millions of years,

the planet had no polar ice caps.

Without this ice,
the sea level was 70 meters higher.

At the other extreme,
about 700 million years ago,

Earth became almost
entirely covered in ice

during an event known
as “Snowball Earth.”

So what causes these massive swings
in the planet’s climate?

One of the main drivers
is atmospheric carbon dioxide,

a greenhouse gas that traps heat.

Natural processes, such as volcanism,

chemical weathering of rocks,

and the burial of organic matter,

can cause huge changes in carbon dioxide
when they continue for millions of years.

Over the past million years,
carbon dioxide has been relatively low,

and repeated glacial maxima

have been caused by cycles
in Earth’s movement around the sun.

As Earth rotates,

it wobbles on its axis
and its tilt changes,

altering the amount of sunlight that
strikes different parts of its surface.

These wobbles, combined
with the planet’s elliptical orbit,

cause summer temperatures to vary

depending on whether the summer solstice
happens when Earth is closer

or farther from the sun.

Approximately every 100,000 years,

these factors align to create dramatically
colder conditions that last for millennia.

Cool summers that aren’t warm enough
to melt the preceding winter’s snow

allow ice to accumulate year after year.

These ice sheets produce
additional cooling

by reflecting more solar energy
back into space.

Simultaneously, cooler conditions
transfer carbon dioxide

from the atmosphere into the ocean,

causing even more cooling
and glacier expansion.

About 20,000 years ago,

these trends reversed when changes
in Earth’s orbit increased summer sunshine

over the giant ice sheets,
and they began to melt.

The sea level rose 130 meters

and carbon dioxide was released
from the ocean back into the atmosphere.

By analyzing pollen and marine fossils,

geologists can tell that temperatures
peaked about 6,000 years ago,

before another shift in Earth’s orbit
caused renewed cooling.

So what’s coming next?

Based on the repeated natural cycle seen
in the climate record,

we’d normally expect the Earth
to continue a trend of gradual cooling

for the next few thousand years.

However, this cooling abruptly
reversed about 150 years ago.

Why?

Carbon dioxide levels in the atmosphere
have been rising since the 19th century,

when fossil fuel use increased.

We know that from studying air bubbles
trapped in Antarctic ice.

This surge in carbon dioxide
also coincides

with a global temperature increase
of nearly one degree Celsius.

Ice cores
and atmospheric monitoring stations

show us that carbon dioxide levels
are rising faster,

and to higher levels,

than at any point
in the last 800,000 years.

Computer models forecast another one to
four degrees Celsius of warming by 2100,

depending on how much
additional fossil fuel we burn.

What does that mean for the ice currently
on Greenland and Antarctica?

Past climate changes suggest that even
a small warming shift

can begin a process of ice melt
that continues for thousands of years.

By the end of this century,

ice melt is expected to raise
the sea level by 30 to 100 centimeters,

enough to impact many coastal cities
and island nations.

If a four-degree Celsius warming persisted
for several millennia,

the sea level could rise
by as much as 10 meters.

By studying past climates,

scientists learn more about what drives
the shifts in ice

that have shaped our planet
for millions of years.

Research suggests that
by taking action now

to reduce carbon dioxide
emissions quickly,

we still have the opportunity to curb
ice loss and save our coastal communities.

两万年前

,地球是一个寒冷的地方,
猛犸象出没。

数千米厚的巨大冰盖

包裹着北美、
亚洲和欧洲的部分地区。

我们通常将其称为“冰河时代”。

但地质学家
称它为末次盛冰期。

那是因为这是最近
一次冰川达到如此巨大的程度,

而“冰河时代”是一个
没有统一定义的非正式术语。

在过去的一百万年里,

实际上有
大约 10 种不同的冰川最大值。

纵观地球历史,
气候变化很大。

数亿年来

,地球上没有极地冰盖。

没有这块冰
,海平面要高出 70 米。

在另一个极端,
大约 7 亿年前,

在一次被
称为“雪球地球”的事件中,地球几乎完全被冰覆盖。

那么,是什么
导致了地球气候的这些巨大波动呢?

主要驱动因素之一
是大气中的二氧化碳,这

是一种可以吸收热量的温室气体。

自然过程,如火山活动、

岩石的化学风化

和有机物的掩埋,

在持续数百万年时会导致二氧化碳的巨大变化

在过去的一百万年里,
二氧化碳相对较低,

而重复的冰川

最大值是由
地球绕太阳运动的周期引起的。

当地球自转时,

它会在其轴上摆动,
并且其倾斜度会发生变化,从而

改变照射到
其表面不同部分的阳光量。

这些摆动
与地球的椭圆轨道相结合,

导致夏季气温发生变化,

具体取决于夏至
是在地球离太阳更近

还是更远时发生。

大约每 100,000 年,

这些因素就会
形成持续数千年的极冷条件。

凉爽的夏天
不足以融化前一个冬天的积雪,

让冰年年积聚。

这些冰盖

通过将更多的太阳能反射
回太空来产生额外的冷却。

同时,较冷的条件
将二氧化碳

从大气中转移到海洋中,

导致更多的冷却
和冰川膨胀。

大约 20,000 年前,


地球轨道的变化增加了巨大冰盖上的夏季阳光时,这些趋势发生了逆转

,它们开始融化。

海平面上升了 130 米

,二氧化碳
从海洋释放回大气。

通过分析花粉和海洋化石,

地质学家可以判断温度
在大约 6000 年前达到顶峰,

然后地球轨道的另一次变化
导致重新冷却。

那么接下来会发生什么?

根据气候记录中反复出现的自然循环

我们通常预计地球

在未来几千年继续逐渐降温的趋势。

然而,这种冷却在
大约 150 年前突然逆转。

为什么? 自 19 世纪化石燃料使用增加以来

,大气中的二氧化碳含量
一直在上升

我们从研究
南极冰层中的气泡中得知这一点。

二氧化碳的激增

与全球气温
升高近 1 摄氏度相吻合。

冰芯
和大气监测站

向我们表明,二氧化碳水平
的上升速度


过去 800,000 年的任何时候都快,而且水平更高。

计算机模型预测
到 2100 年还会再升温 1 到 4 摄氏度,

这取决于
我们燃烧了多少额外的化石燃料。

这对目前格陵兰岛和南极洲的冰层意味着什么?

过去的气候变化表明,即使
是很小的变暖变化

也可以开始
持续数千年的冰融化过程。

到本世纪末,

冰融化预计
会使海平面上升 30 至 100 厘米,

足以影响许多沿海城市
和岛国。

如果 4 摄氏度的升温
持续数千年

,海平面可能
上升多达 10 米。

通过研究过去的气候,

科学家们可以更多地了解是什么推动
了数百万年

来塑造我们星球的冰的变化

研究表明,
通过立即采取行动

迅速减少二氧化碳
排放,

我们仍有机会遏制
冰层流失并拯救我们的沿海社区。