The gamechanging amniotic egg April Tucker

Would you believe that walruses,

rattlesnakes,

and parakeets

all once lived in the same house?

Let’s go back about 350 million years.

Look around.

Steamy swamps and rain forests
of horsetails and ferns

cover the region.

Amphibians are the dominant
land vertebrates.

They range in size from newts

to crocodiles.

And all require water
to do their egg laying.

If they don’t go to the water,

their shell-less, jelly-like
eggs will dry out.

Because of this hazard,

they spend most of their time

living in or near fresh water.

That is, until a breakthrough

in evolution changes everything:

the amniotic egg.

The amniotic egg is shelled,

waterproof,

and can be laid on dry land.

It is produced by the amniotes,

a new group of animals named
after their revolutionary egg.

The first amniote is a tetrapod,

a four-legged animal,

resembling a small lizard.

While some amphibians
can walk around on land

and bury their eggs in wet
soil or highly humid areas,

nothing before the amniotes
has the ability

to lay its eggs on completely dry land.

Because of this evolved egg,

the amniotes are the first animals

with the ability to live
a fully terrestrial life.

But, despite their move inland,

the amniotes have not abandoned

their pond-dwelling upbringing.

In fact, the amniotic egg
brings the pond with them

by enclosing the aquatic
environment within its shell.

This is achieved by four main upgrades

that are unique to amniotic eggs.

Let’s take a closer look.

The first development is the most obvious:

the egg’s protective shell.

It’s tough but flexible,

and has a leathery surface,

still seen in reptile eggs today.

The shell protects
the eggs from predators,

bacteria,

damage,

and drying out.

But, unlike the walls of a fish tank,

the shell of the amniotic egg is porous,

allowing oxygen to pass through

so that the growing amniote
inside doesn’t suffocate.

The next two developments
are two separate membranes

that work together like a pair of lungs.

They bring oxygen into the embryo

while removing carbon dioxide.

The first is the chorion,

which is the protective layer
that oxygen passes through

after entering the shell’s tiny pores.

You may recognize the chorion

as the thin skin you peel
away on a hard boiled egg.

Think of this waterproof membrane

as the in and out doors of the egg.

It’s the entrance for oxygen

and exit for carbon dioxide.

The membrane working with the chorion

is the allantois.

If the chorion is the doors,

then the allantois is essentially
the lobby of the building.

It directs the oxygen and carbon dioxide

while simultaneously storing

unneeded waste from the embryo.

The chorion and the allantois
make sure the embryo

has everything it needs

and gets rid of anything it doesn’t.

The last and perhaps
the most important development

is the amnion, the membrane
for which the egg is named.

The amnion is also contained
within the chroion

and holds the fluid
in which the embryo floats.

Because it has left the watery
world of the amphibians,

the amnion is necessary for preventing

the embryo from drying out.

It is the transportable pond

that allows the amniote
to lay the egg on dry land.

Its fluid also protects the embryo

from any collisions or rough landings,

like a shock absorber on your bike or car.

Together, the shell
and these four membranes

create a safe, watery environment

for the embryo to grow and develop.

The new amniote offspring will continue

the process of vertebrate evolution

as it explores new land
away from the water.

They will spend the next million years

splitting into two distinct groups:

the synapsids and sauropsids.

Synapsida is the group of animals

that contain mammals,

while sauropsida
is the group that contains

reptiles,

birds,

and dinosaurs.

These two amniotic groups
collectively contain

the walruses,

rattlesnakes,

and parakeets we know today.

Like a family reunion,

with relatives of every shape and size,

coming together from different
corners of the Earth,

these animals can all call one place home:

the amniotic egg.

你相信海象、

响尾蛇

和长尾小

鹦鹉曾经都住在同一个房子里吗?

让我们回到大约 3.5 亿年前。

环视四周。

潮湿的沼泽和
马尾和蕨类植物的热带雨林

覆盖了该地区。

两栖动物是主要的
陆地脊椎动物。

它们的大小从蝾螈

到鳄鱼不等。

并且都需要水
来产卵。

如果它们不去水边,

它们的无壳、果冻状的
鸡蛋就会变干。

由于这种危险,

他们大部分时间都

生活在淡水中或淡水附近。

也就是说,直到

进化的突破改变了一切

:羊膜蛋。

羊膜蛋是带壳的,

防水的

,可以在干燥的土地上产卵。

它是由羊膜动物产生的,羊膜

动物是一组
以其革命性的蛋命名的新动物。

第一个羊膜动物

是四足动物,一种四足动物,

类似于小蜥蜴。

虽然一些两栖动物
可以在陆地上四处走动

并将卵埋在潮湿的
土壤或高度潮湿的地区,

但在羊膜动物
有能力

在完全干燥的土地上产卵之前,什么都没有。

由于这种进化的卵

,羊膜动物是第一批

能够
过完全陆地生活的动物。

但是,尽管它们搬到了内陆

,羊膜动物并没有放弃

他们在池塘里的成长。

事实上,羊膜蛋

通过将水生
环境封闭在其壳内,带来了池塘。

这是通过羊膜卵特有的四个主要升级来实现的

让我们仔细看看。

第一个发展是最明显的

:鸡蛋的保护壳。

它坚韧但有弹性,

并且具有坚韧的表面,

今天仍然可以在爬行动物的蛋中看到。

外壳
保护鸡蛋免受捕食者、

细菌、

损坏

和干燥。

但是,与鱼缸的壁不同,

羊膜蛋的壳是多孔的,

可以让氧气通过,

因此内部生长的羊膜
不会窒息。

接下来的两个发展
是两个独立的膜

,它们像一对肺一样协同工作。

它们将氧气带入胚胎,

同时去除二氧化碳。

首先是绒毛膜,


是氧气

进入贝壳微小孔隙后穿过的保护层。

您可能会认出绒毛膜

是您
在煮熟的鸡蛋上剥下的薄皮。

把这种防水膜想象

成鸡蛋的进出门。

它是氧气的入口

和二氧化碳的出口。

与绒毛膜一起工作的膜

是尿囊。

如果绒毛膜是门,

那么尿囊本质
上就是建筑物的大厅。

它引导氧气和二氧化碳

,同时储存

胚胎中不需要的废物。

绒毛膜和尿囊
确保胚胎

拥有它需要的一切,

并摆脱它没有的一切。

最后一个也许
是最重要的发展

是羊膜
,即以卵命名的膜。

羊膜也包含
在 chroion 中,

并保持
胚胎漂浮在其中的液体。

因为它已经离开了两栖动物的水
世界

,羊膜对于

防止胚胎干燥是必要的。

这是一个可移动的池塘

,让羊膜动物
可以在干燥的土地上产卵。

它的液体还可以保护胚胎

免受任何碰撞或粗暴着陆,

例如自行车或汽车上的减震器。

外壳
和这四个膜共同为胚胎的生长和发育

创造了一个安全、水汪汪的环境

新的羊膜动物后代将继续

脊椎动物进化的过程,

因为它探索
远离水的新土地。

他们将在接下来的一百万年里

分裂成两个不同的群体

:突触纲和蜥蜴纲。

Synapsida 是包含哺乳动物的动物群

而 sauropsida
是包含

爬行动物、

鸟类

和恐龙的动物群。

这两个羊膜类群
共同包含

我们今天所知道的海象、响尾蛇和长尾小鹦鹉。

就像家庭团聚一样

,各种形状和大小的亲戚


地球的不同角落聚集在一起,

这些动物都可以把一个地方称为家

:羊膜蛋。