How do geckos defy gravity Eleanor Nelsen

It’s midnight and all is still,

except for the soft skittering
of a gecko hunting a spider.

Geckos seem to defy gravity,

scaling vertical surfaces

and walking upside down
without claws,

adhesive glues or super-powered spiderwebs.

Instead, they take advantage
of a simple principle:

that positive
and negative charges attract.

That attraction binds together
compounds, like table salt,

which is made of positively
charged sodium ions

stuck to negatively charged chloride ions.

But a gecko’s feet aren’t charged

and neither are the surfaces
they’re walking on.

So, what makes them stick?

The answer lies in a clever combination
of intermolecular forces

and stuctural engineering.

All the elements in the periodic table
have a different affinity for electrons.

Elements like oxygen and fluorine
really, really want electrons,

while elements like hydrogen and lithium
don’t attract them as strongly.

An atom’s relative greed for electrons
is called its electronegativity.

Electrons are moving around all the time

and can easily relocate
to wherever they’re wanted most.

So when there are atoms with different
electronegativities in the same molecule,

the molecules cloud of electrons

gets pulled towards
the more electronegative atom.

That creates a thin spot
in the electron cloud

where positive charge
from the atomic nuclei shines through,

as well as a negatively charged
lump of electrons somewhere else.

So the molecule itself isn’t charged,

but it does have positively
and negatively charged patches.

These patchy charges can attract
neighboring molecules to each other.

They’ll line up so that
the positive spots on one

are next to the negative
spots on the other.

There doesn’t even have to be a strongly
electronegative atom

to create these attractive forces.

Electrons are always on the move,

and sometimes they pile up
temporarily in one spot.

That flicker of charge is enough
to attract molecules to each other.

Such interactions between
uncharged molecules

are called van der Waals forces.

They’re not as strong as the interactions
between charged particles,

but if you have enough of them,
they can really add up.

That’s the gecko’s secret.

Gecko toes are padded
with flexible ridges.

Those ridges are covered
in tiny hair-like structures,

much thinner than human hair,
called setae.

And each of the setae is covered
in even tinier bristles called spatulae.

Their tiny spatula-like shape is perfect
for what the gecko needs them to do:

stick and release on command.

When the gecko unfurls its flexible toes
onto the ceiling,

the spatulae hit at the perfect angle
for the van der Waals force to engage.

The spatulae flatten,

creating lots of surface area
for their positively

and negatively charged patches to find
complimentary patches on the ceiling.

Each spatula only contributes a minuscule
amount of that van der Waals stickiness.

But a gecko has about two billion of them,

creating enough combined force
to support its weight.

In fact, the whole gecko could dangle
from a single one of its toes.

That super stickiness
can be broken, though,

by changing the angle just a little bit.

So, the gecko can peel its foot back off,

scurrying towards a meal
or away from a predator.

This strategy, using a forest
of specially shaped bristles

to maximize the van der Waals forces
between ordinary molecules

has inspired man-made materials

designed to imitate
the gecko’s amazing adhesive ability.

Artificial versions aren’t as strong
as gecko toes quite yet,

but they’re good enough to allow
a full-grown man

to climb 25 feet up a glass wall.

In fact, our gecko’s prey is also using
van der Waals forces

to stick to the ceiling.

So, the gecko peels up its toes
and the chase is back on.

现在是午夜,一切都静止了,

除了
壁虎在猎杀蜘蛛时轻柔的掠过。

壁虎似乎无视重力,在

垂直表面

上爬升
,在没有爪子、

胶水或超能蜘蛛网的情况下倒立行走。

相反,他们利用
了一个简单的原则

:正
电荷和负电荷相吸。

这种吸引力将化合物结合在一起
,例如食盐,食盐

由带
正电的钠离子

与带负电的氯离子结合而成。

但是壁虎的脚不带电

,它们行走的表面也不带电

那么,是什么让他们坚持下去?

答案
在于分子间作用力

和结构工程的巧妙结合。

元素周期表中的所有元素
对电子都有不同的亲和力。

像氧和氟
这样的元素真的非常非常需要电子,

而像氢和锂
这样的元素并没有那么强烈地吸引它们。

原子对电子的相对贪婪
称为其电负性。

电子一直在四处移动,

并且可以轻松地重新定位
到他们最需要的地方。

因此,当
同一分子中存在具有不同电负性的原子时

,电子分子云

被拉
向电负性更强的原子。

这会在电子云中形成一个薄点
,来自原子核的

正电荷会在其中
发光,

同时在其他地方也会产生带负电
的电子团。

所以分子本身不带电,

但它确实有带正电
和带负电的斑块。

这些零散的电荷可以将
相邻的分子相互吸引。

他们会排成一排,这样一个上
的积极点就在另一个

消极
点的旁边。

甚至不需要强
电负性原子

来产生这些吸引力。

电子总是在移动

,有时它们会
暂时堆积在一个地方。

电荷的闪烁足以
将分子相互吸引。

不带电分子

之间的这种相互作用称为范德华力。

它们没有带电粒子之间的相互作用那么强

但如果你有足够的它们,
它们真的可以加起来。

这就是壁虎的秘密。

壁虎脚趾
用灵活的脊垫填充。

这些脊上覆盖
着微小的毛发状结构,

比人类的头发细得多,
称为刚毛。

每个刚毛都覆盖
着更细的刷毛,称为抹刀。

它们的小铲子形状非常
适合壁虎需要它们做的事情:

按命令粘贴和释放。

当壁虎将其灵活的脚趾伸到
天花板上时

,抹刀以完美的
角度撞击范德华力。

抹刀变平,

为其带正电

和带负电的贴片创造了大量的表面积,以
在天花板上找到互补的贴片。

每个刮刀只贡献极
少量的范德华粘性。

但是壁虎有大约 20 亿个,

产生了足够的合力
来支撑它的重量。

事实上,整个壁虎可以
从它的一个脚趾上垂下来。

不过

,只要稍微改变一下角度,就可以打破这种超级粘性。

因此,壁虎可以将它的脚脱下来,

匆匆忙忙地走向食物
或远离捕食者。

这种使用
特殊形状的刷毛森林

来最大化普通分子之间的范德华力的策略

激发了人造材料的灵感,这些材料

旨在
模仿壁虎惊人的粘合能力。

人造版本还没有
壁虎脚趾那么强壮,

但它们足以让
一个成年

男子爬上 25 英尺高的玻璃墙。

事实上,我们壁虎的猎物也在利用
范德华

力粘在天花板上。

于是,壁虎抬起脚趾
,重新开始追逐。