How to spot a misleading graph Lea Gaslowitz

A toothpaste brand claims
their product will destroy more plaque

than any product ever made.

A politician tells you their plan
will create the most jobs.

We’re so used to hearing these
kinds of exaggerations

in advertising and politics

that we might not even bat an eye.

But what about when the claim
is accompanied by a graph?

Afterall, a graph isn’t an opinion.

It represents cold, hard numbers,
and who can argue with those?

Yet, as it turns out, there are plenty
of ways graphs can mislead

and outright manipulate.

Here are some things to look out for.

In this 1992 ad, Chevy claimed to make
the most reliable trucks in America

using this graph.

Not only does it show that 98% of all
Chevy trucks sold in the last ten years

are still on the road,

but it looks like they’re twice
as dependable as Toyota trucks.

That is, until you take a closer look
at the numbers on the left

and see that the figure for Toyota
is about 96.5%.

The scale only goes between 95 and 100%.

If it went from 0 to 100,
it would look like this.

This is one of the most common
ways graphs misrepresent data,

by distorting the scale.

Zooming in on a small portion
of the y-axis

exaggerates a barely detectable difference
between the things being compared.

And it’s especially misleading
with bar graphs

since we assume the difference
in the size of the bars

is proportional to the values.

But the scale can also be distorted
along the x-axis,

usually in line graphs
showing something changing over time.

This chart showing the rise
in American unemployment from 2008 to 2010

manipulates the x-axis in two ways.

First of all, the scale is inconsistent,

compressing the 15-month span
after March 2009

to look shorter than
the preceding six months.

Using more consistent data points
gives a different picture

with job losses tapering off
by the end of 2009.

And if you wonder why
they were increasing in the first place,

the timeline starts immediately after
the U.S.’s biggest financial collapse

since the Great Depression.

These techniques are known as
cherry picking.

A time range can be carefully chosen
to exclude the impact of a major event

right outside it.

And picking specific data points
can hide important changes in between.

Even when there’s nothing wrong
with the graph itself,

leaving out relevant data can give
a misleading impression.

This chart of how many people watch
the Super Bowl each year

makes it look like the event’s
popularity is exploding.

But it’s not accounting
for population growth.

The ratings have actually held steady

because while the number
of football fans has increased,

their share of overall viewership has not.

Finally, a graph can’t tell you much

if you don’t know the full significance
of what’s being presented.

Both of the following graphs
use the same ocean temperature data

from the National Centers
for Environmental Information.

So why do they seem to give
opposite impressions?

The first graph plots the average
annual ocean temperature

from 1880 to 2016,

making the change look insignificant.

But in fact, a rise of even
half a degree Celsius

can cause massive ecological disruption.

This is why the second graph,

which show the average temperature
variation each year,

is far more significant.

When they’re used well, graphs can
help us intuitively grasp complex data.

But as visual software has enabled
more usage of graphs throughout all media,

it’s also made them easier to use
in a careless or dishonest way.

So the next time you see a graph,
don’t be swayed by the lines and curves.

Look at the labels,

the numbers,

the scale,

and the context,

and ask what story the picture
is trying to tell.

一个牙膏品牌声称
他们的产品会

比任何产品都破坏更多的牙菌斑。

一位政客告诉你,他们的计划
将创造最多的就业机会。

我们已经习惯了

在广告和政治

中听到这种夸张的说法,以至于我们可能连眼睛都不眨一下。

但是,当
声明附有图表时呢?

毕竟,图表不是意见。

它代表冷酷的数字
,谁能与这些争论?

然而,事实证明,
图表可以通过多种方式误导

和彻底操纵。

以下是一些需要注意的事项。

在这个 1992 年的广告中,雪佛兰声称使用这张图表制造
了美国最可靠的卡车

它不仅表明
过去十年销售的所有雪佛兰卡车中

有 98% 仍在上路行驶,

而且看起来它们的
可靠性是丰田卡车的两倍。

也就是说,直到您仔细
查看左侧的数字

并看到丰田的数字
约为 96.5%。

比例仅在 95% 到 100% 之间。

如果它从 0 变为 100,
它看起来像这样。

这是
图表

通过扭曲比例来歪曲数据的最常见方式之一。

放大 y 轴的一小部分会

夸大
被比较的事物之间几乎无法察觉的差异。

而且它对条形图尤其具有误导
性,

因为我们假设
条形大小的差异

与值成正比。

但是比例也可以
沿 x 轴扭曲,

通常在
显示随时间变化的线图中。

这张显示
2008 年至 2010 年美国失业率上升的图表

以两种方式操纵 x 轴。

首先,规模不一致,

将 2009 年 3 月之后的 15 个月跨度压缩为

比之前的 6 个月更短。

使用更一致的数据点
给出了不同的画面


到 2009 年底,失业人数逐渐减少。

如果你想知道为什么
他们首先会增加

,时间线是在
美国自大萧条以来最大的金融崩溃之后立即开始的

这些技术被称为
樱桃采摘。

可以仔细选择时间范围,
以排除

其外重大事件的影响。

选择特定的数据点
可以隐藏其间的重要变化。

即使
图表本身没有问题,

遗漏相关数据也会给人
一种误导的印象。

这张
每年有多少人观看超级碗的图表

看起来像是该赛事的
受欢迎程度正在爆炸式增长。

但这并没有考虑
到人口增长。

收视率实际上保持稳定,

因为虽然
足球迷的数量有所增加,但

他们在整体收视率中所占的份额却没有。

最后,

如果您不了解
所呈现内容的全部意义,则图表无法告诉您太多信息。

以下两个图表都
使用

来自国家
环境信息中心的相同海洋温度数据。

那么为什么他们似乎给人
相反的印象呢?

第一张图绘制了

从 1880 年到 2016 年的年平均海洋温度,

使变化看起来微不足道。

但事实上,哪怕是半摄氏度的上升

也会造成大规模的生态破坏。

这就是为什么

显示每年平均温度
变化的第二张图表

更为显着的原因。

如果使用得当,图表可以
帮助我们直观地掌握复杂的数据。

但随着可视化软件
在所有媒体中更多地使用图表,

它也使它们更容易
以粗心或不诚实的方式使用。

所以下次看到图表时,
不要被线条和曲线所左右。

查看标签

、数字

、比例

和背景,

并询问
图片试图讲述的故事。