The beautiful mysterious science of how you hear Jim Hudspeth

Transcriber: Joseph Geni
Reviewer: Camille Martínez

Can you hear me OK?

Audience: Yes.

Jim Hudspeth: OK. Well, if you can,
it’s really amazing,

because my voice is changing
the air pressure where you sit

by just a few billionths
of the atmospheric level,

yet we take it for granted

that your ears can capture
that infinitesimal signal

and use it to signal to the brain
the full range of auditory experiences:

the human voice, music, the natural world.

How does your ear do that?

And the answer to that is:

through the cells that are the real hero
of this presentation –

the ear’s sensory receptors,

which are called “hair cells.”

Now, these hair cells
are unfortunately named,

because they have nothing at all
to do with the kind of hair

of which I have less and less.

These cells were originally named that
by early microscopists,

who noticed that emanating
from one end of the cell

was a little cluster of bristles.

With modern electron microscopy,
we can see much better

the nature of the special feature
that gives the hair cell its name.

That’s the hair bundle.

It’s this cluster of 20 to several
hundred fine cylindrical rods

that stand upright
at the top end of the cell.

And this apparatus is what is responsible
for your hearing me right this instant.

Now, I must say that I am
somewhat in love with these cells.

I’ve spent 45 years in their company –

(Laughter)

and part of the reason
is that they’re really beautiful.

There’s an aesthetic component to it.

Here, for example, are the cells

with which an ordinary chicken
conducts its hearing.

These are the cells
that a bat uses for its sonar.

We use these large hair cells from a frog
for many of our experiments.

Hair cells are found all the way down
to the most primitive of fishes,

and those of reptiles often have
this really beautiful,

almost crystalline, order.

But above and beyond its beauty,

the hair bundle is an antenna.

It’s a machine for converting
sound vibrations into electrical responses

that the brain can then interpret.

At the top of each hair bundle,
as you can see in this image,

there’s a fine filament
connecting each of the little hairs,

the stereocilia.

It’s here marked with
a little red triangle.

And this filament has at its base
a couple of ion channels,

which are proteins that span the membrane.

And here’s how it works.

This rat trap represents an ion channel.

It has a pore that passes
potassium ions and calcium ions.

It has a little molecular gate
that can be open, or it can be closed.

And its status is set by this elastic band
which represents that protein filament.

Now, imagine that this arm
represents one stereocilium

and this arm represents
the adjacent, shorter one

with the elastic band between them.

When sound energy impinges
upon the hair bundle,

it pushes it in the direction
towards its taller edge.

The sliding of the stereocilia
puts tension in the link

until the channels open
and ions rush into the cell.

When the hair bundle is pushed
in the opposite direction,

the channels close.

And, most importantly,

a back-and-forth motion
of the hair bundle,

as ensues during the application
of acoustic waves,

alternately opens and closes the channel,

and each opening admits millions
and millions of ions into the cell.

Those ions constitute
an electrical current

that excites the cell.

The excitation is passed to a nerve fiber,

and then propagates into the brain.

Notice that the intensity of the sound

is represented by
the magnitude of this response.

A louder sound pushes
the hair bundle farther,

opens the channel longer,

lets more ions in

and gives rise to a bigger response.

Now, this mode of operation
has the advantage of great speed.

Some of our senses, such as vision,

use chemical reactions that take time.

And as a consequence of that,

if I show you a series of pictures
at intervals of 20 or 30 per second,

you get the sense of a continuous image.

Because it doesn’t use reactions,

the hair cell is fully 1,000 times
faster than our other senses.

We can hear sounds at frequencies
as great as 20,000 cycles per second,

and some animals have ever faster ears.

The ears of bats and whales, for example,
can respond to their sonar pulses

at 150,000 cycles a second.

But this speed doesn’t entirely explain
why the ear performs so well.

And it turns out that our hearing
benefits from an amplifier,

something called the “active process.”

The active process enhances our hearing

and makes possible all the remarkable
features that I’ve already mentioned.

Let me tell you how it works.

First of all, the active process
amplifies sound,

so you can hear, at threshold,
sounds that move the hair bundle

by a distance of only about
three-tenths of a nanometer.

That’s the diameter of one water molecule.

It’s really astonishing.

The system can also operate

over an enormously wide dynamic range.

Why do we need this amplification?

The amplification,
in ancient times, was useful

because it was valuable for us to hear
the tiger before the tiger could hear us.

And these days, it’s essential
as a distant early warning system.

It’s valuable to be able
to hear fire alarms

or contemporary dangerous such as speeding
fire engines or police cars or the like.

When the amplification fails,
our hearing’s sensitivity plummets,

and an individual may then need
an electronic hearing aid

to supplant the damaged biological one.

This active process also enhances
our frequency selectivity.

Even an untrained individual
can distinguish two tones

that differ by only
two-tenths of a percent,

which is one-thirtieth of the difference
between two piano notes,

and a trained musician can do even better.

This fine discrimination is useful

in our ability to distinguish
different voices

and to understand the nuances of speech.

And, again, if the active
process deteriorates,

it becomes harder to carry out
verbal communication.

Finally, the active process is valuable
in setting the very broad range

of sound intensities
that our ears can tolerate,

from the very faintest sound
that you can hear, such as a dropped pen,

to the loudest sound that you can stand –

say, a jackhammer or a jet plane.

The amplitude of sounds
spans a range of one millionfold,

which is more than is encompassed
by any other sense

or by any man-made device
of which I’m aware.

And again, if this system deteriorates,

an affected individual
may have a hard time

hearing the very faintest sounds

or tolerating the very loudest ones.

Now, to understand
how the hair cell does its thing,

one has to situate it within
its environment within the ear.

We learn in school
that the organ of hearing

is the coiled, snail-shaped cochlea.

It’s an organ about
the size of a chickpea.

It’s embedded in the bone
on either side of the skull.

We also learn that an optical prism

can separate white light
into its constituent frequencies,

which we see as distinct colors.

In an analogous way,

the cochlea acts as sort of
an acoustic prism

that splits apart complex sounds
into their component frequencies.

So when a piano is sounded,

different notes blend
together into a chord.

The cochlea undoes that process.

It separates them and represents
each at a different position.

In this picture, you can see
where three notes –

middle C and the two
extreme notes on a piano –

are represented in the cochlea.

The lowest frequencies go all the way up
to the top of the cochlea.

The highest frequencies,
down to 20,000 Hz,

go all the way to the bottom
of the cochlea,

and every other frequency
is represented somewhere in between.

And, as this diagram shows,

successive musical tones are represented
a few tens of hair cells apart

along the cochlear surface.

Now, this separation of frequencies

is really key in our ability
to identify different sounds,

because very musical instrument,

every voice,

emits a distinct constellation of tones.

The cochlea separates those frequencies,

and the 16,000 hair cells
then report to the brain

how much of each frequency is present.

The brain can then compare
all the nerve signals

and decide what particular
tone is being heard.

But this doesn’t explain everything
that I want to explain.

Where’s the magic?

I told you already about the great things
that the hair cell can do.

How does it carry out the active process

and do all the remarkable features
that I mentioned at the outset?

The answer is instability.

We used to think that the hair bundle
was a passive object,

it just sat there, except
when it was stimulated.

But in fact, it’s an active machine.

It’s constantly using internal energy
to do mechanical work

and enhance our hearing.

So even at rest,
in the absence of any input,

an active hair bundle
is constantly trembling.

It’s constantly twitching back and forth.

But when even a weak sound
is applied to it,

it latches on to that sound
and begins to move very neatly

in a one-to-one way with it,

and by so doing, it amplifies the signal
about a thousand times.

This same instability also enhances
our frequency selectivity,

for a given hair cell
tends to oscillate best

at the frequency at which
it normally trembles

when it’s not being stimulated.

So, this apparatus not only
gives us our remarkably acute hearing,

but also gives us
the very sharp tuning.

I want to offer you a short demonstration

of something related to this.

I’ll ask the people who
are running the sound system

to turn up its sensitivity
at one specific frequency.

So just as a hair cell is tuned
to one frequency,

the amplifier will now enhance
a particular frequency in my voice.

Notice how specific tones emerge
more clearly from the background.

This is exactly what hair cells do.

Each hair cell amplifies and reports
one specific frequency

and ignores all the others.

And the whole set of hair cells,
as a group, can then report to the brain

exactly what frequencies
are present in a given sound,

and the brain can determine
what melody is being heard

or what speech is being intended.

Now, an amplifier such as
the public address system

can also cause problems.

If the amplification is turned up too far,

it goes unstable and begins to howl

or emit sounds.

And one wonders why the active process
doesn’t do the same thing.

Why don’t our ears beam out sounds?

And the answer is that they do.

In a suitably quiet environment,
70 percent of normal people

will have one or more sounds
coming out of their ears.

(Laughter)

I’ll give you an example of this.

You will hear two emissions
at high frequencies

coming from a normal human ear.

You may also be able to discern
background noise,

like the microphone’s hiss,

the gurgling of a stomach,
the heartbeat, the rustling of clothes.

(Hums, microphone hiss,
dampened taps, clothes rustling)

This is typical.

Most ears emit just a handful of tones,

but some can emit as many as 30.

Every ear is unique, so my right ear
is different from my left,

my ear is different from your ear,

but unless an ear is damaged,

it continues to emit
the same spectrum of frequencies

over a period of years or even decades.

So what’s going on?

It turns out that the ear
can control its own sensitivity,

its own amplification.

So if you’re in a very loud environment,
like a sporting event

or a musical concert,

you don’t need any amplification,

and the system is turned down all the way.

If you are in a room like this auditorium,

you might have a little bit
of amplification,

but of course the public address system
does most of the work for you.

And finally, if you go into
a really quiet room

where you can hear a pin drop,

the system is turned up
almost all the way.

But if you go into an ultraquiet room
such as a sound chamber,

the system turns itself up to 11,

it goes unstable

and it begins to emit sound.

And these emissions constitute
a really strong demonstration

of just how active the hair cell can be.

So in the last minute, I want to turn
to another question that might come up,

which is: Where do we go from here?

And I would say that there
are three issues

that I would really like
to address in the future.

The first is: What is the molecular motor

that’s responsible for
the hair cell’s amplification?

Somehow, nature has stumbled
across a system

that can oscillate or amplify
at 20,000 cycles per second,

or even more.

That’s much faster than any other
biological oscillation,

and we would like to understand
where it comes from.

The second issue is how the hair cell’s
amplification is adjusted

to deal with the acoustic circumstances.

Who turns the knob to increase
or decrease the amplification

in a quiet or in a loud environment?

And the third issue is one
that concerns all of us,

which is what we can do
about the deterioration of our hearing.

Thirty million Americans,

and more than 400 million
people worldwide,

have significant problems on a daily basis

with understanding speech
in a noisy environment

or over the telephone.

Many have even worse deficits.

Moreover, these deficits
tend to get worse with time,

because when human hair cells die,

they’re not replaced by cell division.

But we know that nonmammalian animals
can replace their cells,

and those creatures' cells are dying
and being replaced throughout life,

so the animals maintain normal hearing.

Here’s an example
from a little zebra fish.

The cell at the top
will undergo a division

to produce two new hair cells.

They dance for a little bit,

and then settle down and go to work.

So we believe that if we can decode
the molecular signals that are used

by these other animals
to regenerate their hair cells,

we’ll be able to do
the same thing for humans.

And our group and many other groups
are now engaged in research

trying to resurrect
these amazing hair cells.

Thank you for your attention.

(Applause)

抄写员:Joseph Geni
审稿人:Camille Martínez

你能听到我说话吗?

观众:是的。

吉姆·哈德斯佩斯:好的。 好吧,如果可以的话,
那真是太神奇了,

因为我的声音正在改变
你坐的气压,

只是
大气压的十亿分之一,

但我们理所当然地

认为你的耳朵可以捕捉
到这个无限小的信号

并用它来发出信号 给
大脑全方位的听觉体验

:人声、音乐、自然世界。

你的耳朵是怎么做到的?

答案是:

通过本次演讲的真正英雄

——耳朵的感觉受体

,被称为“毛细胞”的细胞。

现在,不幸的是,这些毛细胞
被命名了,

因为它们
与我越来越少的那种头发毫无关系

这些细胞最初是
由早期的显微镜学家命名的,

他们注意到
从细胞的一端发出的

是一小簇刷毛。

借助现代电子显微镜,
我们可以更好地看到赋予毛细胞名称

的特殊特征的性质

那是发束。

正是这个由 20 到
数百个细圆柱杆组成的集群,

它们直立
在细胞的顶端。

而这个装置就是
让你在这一刻听到我的原因。

现在,我必须说我
有点爱上了这些细胞。

我在他们公司工作了 45 年——

(笑声

) 部分原因
是他们真的很漂亮。

它有一个美学成分。

例如

,这里是普通鸡
进行听觉的细胞。

这些是蝙蝠用于声纳的细胞。

我们在许多实验中使用来自青蛙的这些大毛细胞

毛细胞一直存在
到最原始的鱼类,

而爬行动物的毛细胞通常具有
这种非常美丽、

几乎是结晶的顺序。

但除了它的美丽之外

,发束是一根天线。

它是将
声音振动转换

为大脑可以解释的电响应的机器。

正如你在这张图片中看到的,在每个发束的顶部,

有一根细丝
连接着每根小毛发,

即静纤毛。

它在这里标有
一个红色的小三角形。

这种细丝的底部
有几个离子通道,

它们是跨越膜的蛋白质。

这就是它的工作原理。

这个捕鼠器代表一个离子通道。

它有一个可以通过
钾离子和钙离子的孔。

它有一个小分子门
,可以打开,也可以关闭。

它的状态是由
这个代表蛋白质细丝的弹性带决定的。

现在,想象一下这个手臂
代表一个立体纤毛,

而这个手臂
代表相邻的较短的一个

,它们之间有弹性带。

当声能
撞击发束时,

它会将其
推向其较高边缘的方向。

静纤毛的滑动
给连接带来张力,

直到通道打开
并且离子涌入细胞。

当向相反方向推动发束时

,通道关闭。

而且,最重要的是,在声波应用过程

中,毛束的来回运动会

交替打开和关闭通道

,每个开口都会让数
以百万计的离子进入细胞。

这些离子

构成激发细胞的电流。

兴奋被传递到神经纤维,

然后传播到大脑中。

请注意,声音的强度由

该响应的幅度表示。

更大的声音
将发束推得更远,

通道打开的时间更长,

让更多的离子进入

并产生更大的响应。

现在,这种操作模式
具有速度快的优势。

我们的一些感官,例如视觉,

使用需要时间的化学反应。

因此,

如果我
以每秒 20 或 30 张的间隔向您展示一系列图片,

您就会感觉到连续的图像。

因为它不使用反应,

所以毛细胞
比我们的其他感官快 1000 倍。

我们可以听到频率
高达每秒 20,000 次的声音,

而且有些动物的耳朵更快。

例如,蝙蝠和鲸鱼的耳朵
可以以每秒 150,000 个周期响应它们的声纳脉冲

但是这个速度并不能完全解释
为什么耳朵表现得这么好。

事实证明,我们的听力
受益于放大器,

称为“主动过程”。

主动过程增强了我们的听力

,并使我已经提到的所有显着特征成为可能

让我告诉你它是如何工作的。

首先,主动过程会
放大声音,

因此您可以在阈值处
听到将发束移动

大约
十分之三纳米的距离的声音。

那是一个水分子的直径。

这真的很惊人。

该系统还可以

在非常宽的动态范围内运行。

为什么我们需要这种放大?

放大
在古代很有用,

因为
在老虎听到我们之前先听到老虎的声音对我们来说很有价值。

而如今,它
作为一个遥远的早期预警系统是必不可少的。

能够听到火灾警报

或当代危险(例如超速的
消防车或警车等)是很有价值的。

当放大失败时,
我们的听力灵敏度会直线下降,

然后个人可能需要
电子助听器

来取代受损的生物助听器。

这种主动过程也增强
了我们的频率选择性。

即使是未受过训练的人
也能分辨出两个

仅相差
十分之二的音调,

这是
两个钢琴音符之间差异的三十分之一,

而受过训练的音乐家可以做得更好。

这种精细的辨别

能力有助于我们区分
不同的声音

和理解语音的细微差别。

而且,如果主动
过程恶化,

进行口头交流就会变得更加困难

最后,主动过程
对于设置

我们的耳朵可以承受的非常广泛的声音强度范围很有价值,

从你能听到的最微弱的声音
,比如掉落的笔,

到你能站立的最响亮的声音——

比如说, 手提钻或喷气式飞机。

声音
的幅度跨越一百万倍,

这比我所知道
的任何其他感官

或任何人造
设备所包含的都要多。

再说一次,如果这个系统恶化

,受影响的人
可能很难

听到最微弱的声音

或忍受最响亮的声音。

现在,要
了解毛细胞是如何工作的

,必须将
其置于耳朵内的环境中。

我们在学校
了解到,听觉器官

是螺旋状的蜗牛状耳蜗。


是一个鹰嘴豆大小的器官。

它嵌入
头骨两侧的骨头中。

我们还了解到,光学棱镜

可以将白光
分成其组成频率

,我们将其视为不同的颜色。

以类似的方式

,耳蜗就像
一个声学棱镜

,将复杂的声音
分解成它们的分量频率。

因此,当钢琴响起时,

不同的音符会
混合成一个和弦。

耳蜗取消了这个过程。

它将它们分开并
在不同的位置表示每个。

在这张图片中,您可以
看到三个音符——钢琴上的

中间 C 和两个
极端音符

——在耳蜗中的位置。

最低频率一直
到耳蜗的顶部。

最高频率(
低至 20,000 赫兹

)一直到
耳蜗底部,

而其他频率
则介于两者之间。

并且,如该图所示,

连续的音调表示
沿耳蜗表面相隔几十个毛细胞

现在,这种频率分离对于

我们
识别不同声音的能力非常关键,

因为非常乐器,

每一个声音,都会

发出不同的音调。

耳蜗将这些频率分开,

然后 16,000 个毛细胞
向大脑报告

每个频率存在多少。

然后大脑可以比较
所有的神经信号

并决定听到什么特定的
音调。

但这并不能
解释我想解释的一切。

魔法在哪里?

我已经告诉过你
毛细胞可以做的伟大事情。

它如何执行主动过程

并完成
我一开始提到的所有显着功能?

答案是不稳定。

我们曾经认为发束
是一个被动的物体,

它只是坐在那里,
除非它受到刺激。

但实际上,它是一台有源机器。

它不断地利用内部能量
来做机械功

并增强我们的听力。

所以即使是静止的,
在没有任何输入的情况下,

一根活跃的发
束也在不断地颤抖。

它不断地来回抽搐。

但是,即使是微弱的
声音,

它也会锁定那个声音,
并开始以一对一的方式非常整齐地移动

,通过这样做,它会将信号放大
大约一千倍。

同样的不稳定性也增强
了我们的频率选择性,

因为一个给定的毛细胞
往往

在它没有受到刺激时通常颤抖的频率上振荡得最好。

所以,这个设备不仅
给了我们非常敏锐的听力,

而且给了
我们非常敏锐的调谐。

我想为您提供

与此相关的内容的简短演示。

我会要求
运行音响系统的人员

在一个特定频率上调高其灵敏度。

因此,就像将毛细胞调谐
到一个频率一样

,放大器现在将增强
我声音中的特定频率。

注意特定的音调是如何
从背景中更清晰地出现的。

这正是毛细胞所做的。

每个毛细胞放大并报告
一个特定频率

并忽略所有其他频率。

整个毛细胞
作为一个群体,然后可以向大脑准确报告

给定声音中存在的频率,

并且大脑可以确定
正在听到什么旋律

或想要表达什么。

现在,
诸如公共广播系统之类的放大器

也会引起问题。

如果放大太高,

它会变得不稳定并开始嚎叫

或发出声音。

有人想知道为什么活动进程
不做同样的事情。

为什么我们的耳朵不发出声音?

答案是他们这样做了。

在适当安静的环境中,
70% 的正常人的耳朵

会发出一种或多种声音

(笑声)

我给你举个例子。

您将听到

来自正常人耳的两种高频发射。

您还可以辨别
背景噪音,

例如麦克风的嘶嘶声、

胃的咕噜声
、心跳声、衣服的沙沙声。

(嗡嗡声、麦克风嘶嘶声、
水龙头被打湿、衣服沙沙作响)

这很典型。

大多数耳朵只发出少量的音调,

但有些可以发出多达 30 种音调。

每只耳朵都是独一无二的,所以我的右耳和
左耳不同,

我的耳朵和你的耳朵不同,

但除非耳朵受损,

否则它会继续 在几年甚至几十年内
发射相同的频谱

发生什么了?

事实证明,耳朵
可以控制自己的灵敏度,

自己的放大率。

因此,如果您处于非常嘈杂的环境中,
例如体育赛事

或音乐会,

您不需要任何扩音器

,系统会一直处于关闭状态。

如果你在像这个礼堂这样的房间里,

你可能会有
一点扩音器,

但当然,公共广播系统
会为你完成大部分工作。

最后,如果你进入
一个非常安静的房间

,在那里你可以听到一根针掉下来的声音,

那么系统
几乎会一直打开。

但是如果你进入一个超安静的房间,
比如音室

,系统会自动调到 11,

它会变得不稳定

并开始发出声音。

这些排放物
有力地

证明了毛细胞的活跃程度。

所以在最后一分钟,我想
转向另一个可能会出现的问题,

那就是:我们从这里去哪里?

我想说的是

,我将来真的
想解决三个问题。

首先是:负责毛细胞放大的分子马达是什么

不知何故,大自然偶然
发现了

一个可以
以每秒 20,000 个周期

甚至更多周期振荡或放大的系统。

这比任何其他生物振荡都要快得多

,我们想
了解它的来源。

第二个问题是如何调整毛细胞的
放大

以应对声学环境。

在安静或嘈杂的环境中转动旋钮来增加或减少放大率?

第三个问题
是我们所有人都关心的问题,

那就是我们可以做些
什么来解决我们的听力下降问题。

3000 万美国人

和全球超过 4 亿

每天

在嘈杂的环境中

或通过电话理解语音方面存在重大问题。

许多人的赤字甚至更严重。

此外,
随着时间的推移,这些缺陷往往会变得更糟,

因为当人类毛细胞死亡时,

它们不会被细胞分裂所取代。

但我们知道,非哺乳类动物
可以更换细胞,

而这些生物的细胞终生都在死亡
和被更换,

所以动物保持正常的听力。

这是
一个小斑马鱼的例子。

顶部的细胞
将经历分裂

,产生两个新的毛细胞。

他们跳了一会儿舞,

然后安顿下来开始工作。

所以我们相信,如果我们能够解码

这些其他动物
用来再生毛细胞的分子信号,

我们就能
为人类做同样的事情。

我们的小组和许多其他小组
现在都在从事研究,

试图复活
这些惊人的毛细胞。

感谢您的关注。

(掌声)