Could a blind eye regenerate David Davila

Imagine that day by day,

your field of vision
becomes slightly smaller,

narrowing or dimming

until eventually you go completely blind.

We tend to think of blindness
as something you’re born with,

but in fact, with many diseases
like Retinitis pigmentosa

and Usher syndrome,

blindness can start developing
when you’re a kid,

or even when you’re an adult.

Both of these rare genetic diseases
affect the retina,

the screen at the back of the eye
that detects light and helps us see.

Now imagine if the eye
could regenerate itself

so that a blind person could see again.

To understand if that’s possible,
we need to grasp how the retina works

and what it has to do
with a multitalented creature

named the zebrafish.

The human retina is made
of different layers of cells,

with special neurons
that live in the back of the eye

called rod and cone photoreceptors.

Photoreceptors convert
the light coming into your eye

into signals that the brain uses
to generate vision.

People who have Usher syndrome
and retinitis pigmentosa

experience a steady loss
of these photoreceptors

until finally that screen in the eye
can no longer detect light

nor broadcast signals to the brain.

Unlike most of your body’s cells,
photoreceptors don’t divide and multiply.

We’re born with all
the photoreceptors we’ll ever have,

which is why babies
have such big eyes for their faces

and part of why they’re so cute.

But that isn’t the case for all animals.

Take the zebrafish,
a master regenerator.

It can grow back its skin, bones, heart
and retina after they’ve been damaged.

If photoreceptors in the zebrafish retina
are removed or killed by toxins,

they just regenerate and rewire
themselves to the brain to restore sight.

Scientists have been investigating
this superpower

because zebrafish retina are also
structured very much like human retina.

Scientists can even mimic the effects
of disorders like Usher syndrome

or retinitis pigmentosa
on the zebrafish eye.

This allows them to see how zebrafish
go about repairing their retinas

so they might use similar tactics
to fix human eyes one day, too.

So what’s behind
the zebrafish’s superpower?

The main players are sets of long cells
that stretch across the retina

called Müller glia.

When the photoreceptors are damaged,
these cells transform,

taking on a new character.

They become less like Müller cells
and more like stem cells,

which can turn into any kind of cell.

Then these long cells divide,

producing extras that will eventually
grow into new photoreceptors,

travel to the back of the eye
and rewire themselves into the brain.

And now some researchers even think
they’ve found the key to how this works

with the help of one of two chemicals
that create activity in the brain

called glutamate
and aminoadipate.

In mouse eyes,

these make the Müller glia divide
and transform into photoreceptors,

which then travel
to the back of the retina,

like they’re replenishing a failing army
with new soldiers.

But remember, none of this has happened
in our retinas yet,

so the question is how do we trigger
this transformation of the Müller glia

in the human eye?

How can we fully control this process?

How do photoreceptors
rewire themselves into the retina?

And is it even possible
to trigger this in humans?

Or has this mechanism been lost
over time in evolution?

Until we tease apart
the origins of this ability,

retinal regeneration will remain
a mysterious superpower

of the common zebrafish.

想象一天一天,

你的视野
会变得稍微变小,

变窄或变暗,

直到最终你完全失明。

我们倾向于将失明
视为与生俱来的东西,

但事实上,对于许多疾病,
如色素性视网膜炎

和 Usher 综合征,

当你还是个孩子

甚至成年后,失明就会开始发展。

这两种罕见的遗传疾病
都会影响视网膜,

即眼睛后部的屏幕,
可以检测光线并帮助我们看到。

现在想象一下,如果眼睛
可以自我再生,

让盲人可以再次看到。

要了解这是否可能,
我们需要了解视网膜是如何工作的

,以及它
与一种名为斑马鱼的多才多艺的生物有什么关系

人类视网膜
由不同层的细胞组成,

具有生活在眼睛后部的特殊神经元,

称为视杆和视锥细胞。

光感受器将
进入您眼睛的光转换为

大脑
用来产生视觉的信号。

患有 Usher 综合征
和色素性视网膜炎的人会

经历
这些光感受器的稳定损失,

直到最终眼睛中的屏幕
不再能够检测到光,

也不能向大脑发送信号。

与您身体的大多数细胞不同,
光感受器不会分裂和繁殖。

我们生来就拥有
我们将拥有的所有感光器,

这就是为什么婴儿
的脸有这么大的眼睛,

也是他们如此可爱的部分原因。

但并非所有动物都如此。

以斑马鱼为例,它
是一种再生大师。

它可以在皮肤、骨骼、心脏
和视网膜受损后重新长出来。

如果斑马鱼视网膜中的光感受器
被毒素去除或杀死,

它们就会再生并重新连接
到大脑以恢复视力。

科学家们一直在研究
这种超级大国,

因为斑马鱼视网膜的
结构也非常类似于人类视网膜。

科学家甚至可以模拟
Usher 综合征

或色素性视网膜炎
等疾病对斑马鱼眼睛的影响。

这使他们能够看到斑马鱼
是如何修复视网膜的,

因此他们有一天也可以使用类似的策略
来修复人眼。

那么
斑马鱼的超能力背后是什么?

主要参与者是一组横跨视网膜的长细胞

称为 Müller 神经胶质细胞。

当感光器受损时,
这些细胞会发生转变,

呈现出新的特征。

它们变得不像 Müller 细胞,
而更像干细胞

,可以变成任何类型的细胞。

然后这些长细胞分裂,

产生额外的细胞,最终
会长成新的光感受器,

传播到眼睛的后部,
并重新连接到大脑中。

现在,一些研究人员甚至认为

,借助谷氨酸和氨基己二酸这两种
在大脑中产生活性的化学物质中的一种,他们已经找到了这种工作原理的关键

在老鼠的眼睛里,

这些使 Müller 神经胶质细胞分裂
并转化为光感受器

,然后传播
到视网膜的后面,

就像他们正在用新的士兵补充一支失败的军队一样

但请记住,这一切还没有发生
在我们的视网膜中,

所以问题是我们如何触发人眼中
Müller 胶质细胞的这种转变

我们如何才能完全控制这个过程?

感光器如何
重新连接到视网膜?

甚至有可能
在人类身上引发这种情况吗?

还是
随着时间的推移,这种机制在进化过程中消失了?

在我们梳理
出这种能力的起源之前,

视网膜再生将仍然

普通斑马鱼的神秘超级大国。