The age of genetic wonder Juan Enriquez

So let me with start with Roy Amara.

Roy’s argument is that most new
technologies tend to be overestimated

in their impact to begin with,

and then they get underestimated
in the long term

because we get used to them.

These really are days
of miracle and wonder.

You remember that wonderful
song by Paul Simon?

There were two lines in it.

So what was it that was considered
miraculous back then?

Slowing down things – slow motion –

and the long-distance call.

Because, of course, you used
to get interrupted by operators

who’d tell you, “Long distance calling.
Do you want to hang up?”

And now we think nothing of calling
all over the world.

Well, something similar may be happening

with reading and programming life.

But before I unpack that,

let’s just talk about telescopes.

Telescopes were overestimated
originally in their impact.

This is one of Galileo’s early models.

People thought it was just
going to ruin all religion.

(Laughter)

So we’re not paying that much
attention to telescopes.

But, of course, telescopes launched
10 years ago, as you just heard,

could take this Volkswagen,
fly it to the moon,

and you could see the lights
on that Volkswagen light up on the moon.

And that’s the kind of resolution power
that allowed you to see

little specks of dust
floating around distant suns.

Imagine for a second that this
was a sun a billion light years away,

and you had a little speck of dust
that came in front of it.

That’s what detecting
an exoplanet is like.

And the cool thing is, the telescopes
that are now being launched

would allow you to see
a single candle lit on the moon.

And if you separated it by one plate,

you could see two candles
separately at that distance.

And that’s the kind
of resolution that you need

to begin to image
that little speck of dust

as it comes around the sun

and see if it has a blue-green signature.

And if it does have
a blue-green signature,

it means that life
is common in the universe.

The first time you ever see a blue-green
signature on a distant planet,

it means there’s photosynthesis there,

there’s water there,

and the chances that you saw
the only other planet with photosynthesis

are about zero.

And that’s a calendar-changing event.

There’s a before and after
we were alone in the universe:

forget about the discovery
of whatever continent.

So as you’re thinking about this,

we’re now beginning
to be able to image most of the universe.

And that is a time of miracle and wonder.

And we kind of take that for granted.

Something similar is happening in life.

So we’re hearing about life
in these little bits and pieces.

We hear about CRISPR,
and we hear about this technology,

and we hear about this technology.

But the bottom line on life
is that life turns out to be code.

And life as code is a really
important concept because it means,

just in the same way
as you can write a sentence

in English or in French or Chinese,

just in the same way
as you can copy a sentence,

just in the same way
as you can edit a sentence,

just in the same way
as you can print a sentence,

you’re beginning to be able
to do that with life.

It means that we’re beginning
to learn how to read this language.

And this, of course, is the language
that is used by this orange.

So how does this orange execute code?

It doesn’t do it in ones and zeroes
like a computer does.

It sits on a tree, and one day it does:

plop!

And that means: execute.

AATCAAG: make me a little root.

TCGACC: make me a little stem.

GAC: make me some leaves.
AGC: make me some flowers.

And then GCAA: make me some more oranges.

If I edit a sentence in English
on a word processor,

then what happens is you can go
from this word to that word.

If I edit something in this orange

and put in GCAAC, using CRISPR
or something else that you’ve heard of,

then this orange becomes a lemon,

or it becomes a grapefruit,

or it becomes a tangerine.

And if I edit one in a thousand letters,

you become the person
sitting next to you today.

Be more careful where you sit.

(Laughter)

What’s happening on this stuff
is it was really expensive to begin with.

It was like long-distance calls.

But the cost of this is dropping
50 percent faster than Moore’s law.

The first $200 full genome
was announced yesterday by Veritas.

And so as you’re looking at these systems,

it doesn’t matter, it doesn’t matter,
it doesn’t matter, and then it does.

So let me just give you
the map view of this stuff.

This is a big discovery.

There’s 23 chromosomes.

Cool.

Let’s now start using a telescope version,
but instead of using a telescope,

let’s use a microscope to zoom in

on the inferior of those chromosomes,

which is the Y chromosome.

It’s a third the size of the X.
It’s recessive and mutant.

But hey,

just a male.

And as you’re looking at this stuff,

here’s kind of a country view

at a 400 base pair resolution level,

and then you zoom in to 550,
and then you zoom in to 850,

and you can begin to identify
more and more genes as you zoom in.

Then you zoom in to the state level,

and you can begin to tell
who’s got leukemia,

how did they get leukemia,
what kind of leukemia do they have,

what shifted from what place
to what place.

And then you zoom in
to the Google street view level.

So this is what happens
if you have colorectal cancer

for a very specific patient
on the letter-by-letter resolution.

So what we’re doing in this stuff
is we’re gathering information

and just generating
enormous amounts of information.

This is one of the largest
databases on the planet

and it’s growing faster
than we can build computers to store it.

You can create some incredible
maps with this stuff.

You want to understand the plague
and why one plague is bubonic

and the other one
is a different kind of plague

and the other one
is a different kind of plague?

Well, here’s a map of the plague.

Some are absolutely deadly to humans,

some are not.

And note, by the way,
as you go to the bottom of this,

how does it compare to tuberculosis?

So this is the difference between
tuberculosis and various kinds of plagues,

and you can play detective
with this stuff,

because you can take
a very specific kind of cholera

that affected Haiti,

and you can look at
which country it came from,

which region it came from,

and probably which soldier took that
from that African country to Haiti.

Zoom out.

It’s not just zooming in.

This is one of the coolest maps
ever done by human beings.

What they’ve done is taken
all the genetic information they have

about all the species,

and they’ve put a tree of life
on a single page

that you can zoom in and out of.

So this is what came first,
how did it diversify, how did it branch,

how large is that genome,

on a single page.

It’s kind of the universe
of life on Earth,

and it’s being constantly
updated and completed.

And so as you’re looking at this stuff,

the really important change is
the old biology used to be reactive.

You used to have a lot of biologists
that had microscopes,

and they had magnifying glasses
and they were out observing animals.

The new biology is proactive.

You don’t just observe stuff,
you make stuff.

And that’s a really big change

because it allows us
to do things like this.

And I know you’re really
excited by this picture.

(Laughter)

It only took us four years
and 40 million dollars

to be able to take this picture.

(Laughter)

And what we did

is we took the full gene code
out of a cell –

not a gene, not two genes,
the full gene code out of a cell –

built a completely new gene code,

inserted it into the cell,

figured out a way to have the cell
execute that code

and built a completely new species.

So this is the world’s first
synthetic life form.

And so what do you do with this stuff?

Well, this stuff is going
to change the world.

Let me give you three short-term trends

in terms of how it’s going
to change the world.

The first is we’re going to see
a new industrial revolution.

And I actually mean that literally.

So in the same way as Switzerland
and Germany and Britain

changed the world with machines
like the one you see in this lobby,

created power –

in the same way CERN
is changing the world,

using new instruments
and our concept of the universe –

programmable life forms
are also going to change the world

because once you can program cells

in the same way as you
program your computer chip,

then you can make almost anything.

So your computer chip
can produce photographs,

can produce music, can produce film,

can produce love letters,
can produce spreadsheets.

It’s just ones and zeroes
flying through there.

If you can flow ATCGs through cells,

then this software makes its own hardware,

which means it scales very quickly.

No matter what happens,

if you leave your cell phone
by your bedside,

you will not have a billion
cell phones in the morning.

But if you do that with living organisms,

you can make this stuff
at a very large scale.

One of the things you can do
is you can start producing

close to carbon-neutral fuels

on a commercial scale by 2025,

which we’re doing with Exxon.

But you can also substitute
for agricultural lands.

Instead of having 100 hectares
to make oils or to make proteins,

you can make it in these vats

at 10 or 100 times
the productivity per hectare.

Or you can store information,
or you can make all the world’s vaccines

in those three vats.

Or you can store most of the information
that’s held at CERN in those three vats.

DNA is a really powerful
information storage device.

Second turn:

you’re beginning to see the rise
of theoretical biology.

So, medical school departments are one
of the most conservative places on earth.

The way they teach anatomy is similar
to the way they taught anatomy

100 years ago.

“Welcome, student. Here’s your cadaver.”

One of the things medical schools are
not good at is creating new departments,

which is why this is so unusual.

Isaac Kohane has now created a department
based on informatics, data, knowledge

at Harvard Medical School.

And in a sense,
what’s beginning to happen is

biology is beginning to get enough data

that it can begin to follow
the steps of physics,

which used to be observational physics

and experimental physicists,

and then started creating
theoretical biology.

Well, that’s what you’re beginning to see

because you have so many medical records,

because you have
so much data about people:

you’ve got their genomes,
you’ve got their viromes,

you’ve got their microbiomes.

And as this information stacks,

you can begin to make predictions.

The third thing that’s happening
is this is coming to the consumer.

So you, too, can get your genes sequenced.

And this is beginning to create
companies like 23andMe,

and companies like 23andMe
are going to be giving you

more and more and more data,

not just about your relatives,

but about you and your body,

and it’s going to compare stuff,

and it’s going
to compare stuff across time,

and these are going to become
very large databases.

But it’s also beginning to affect
a series of other businesses

in unexpected ways.

Normally, when you advertise something,
you really don’t want the consumer

to take your advertisement
into the bathroom to pee on.

Unless, of course, if you’re IKEA.

Because when you rip this
out of a magazine and you pee on it,

it’ll turn blue if you’re pregnant.

(Laughter)

And they’ll give you
a discount on your crib.

(Laughter)

Right? So when I say consumer empowerment,

and this is spreading beyond biotech,

I actually really mean that.

We’re now beginning to produce,
at Synthetic Genomics,

desktop printers

that allow you to design a cell,

print a cell,

execute the program on the cell.

We can now print vaccines

real time as an airplane takes off

before it lands.

We’re shipping 78
of these machines this year.

This is not theoretical biology.
This is printing biology.

Let me talk about two long-term trends

that are coming at you
over a longer time period.

The first one is, we’re starting
to redesign species.

And you’ve heard about that, right?

We’re redesigning trees.
We’re redesigning flowers.

We’re redesigning yogurt,

cheese, whatever else you want.

And that, of course,
brings up the interesting question:

How and when should we redesign humans?

And a lot of us think,
“Oh no, we never want to redesign humans.”

Unless, of course, if your child
has a Huntington’s gene

and is condemned to death.

Or, unless if you’re passing on
a cystic fibrosis gene,

in which case, you don’t just want
to redesign yourself,

you want to redesign your children
and their children.

And these are complicated debates
and they’re going to happen in real time.

I’ll give you one current example.

One of the debates going on
at the National Academies today

is you have the power to put
a gene drive into mosquitoes

so that you will kill
all the malaria-carrying mosquitoes.

Now, some people say,

“That’s going to affect the environment
in an extreme way, don’t do it.”

Other people say,

“This is one of the things
that’s killing millions of people yearly.

Who are you to tell me
that I can’t save the kids in my country?”

And why is this debate so complicated?

Because as soon as you
let this loose in Brazil

or in Southern Florida –

mosquitoes don’t respect walls.

You’re making a decision for the world

when you put a gene drive into the air.

This wonderful man won a Nobel Prize,

and after winning the Nobel Prize

he’s been worrying about

how did life get started on this planet

and how likely is it
that it’s in other places?

So what he’s been doing is going around
to this graduate students

and saying to his graduate students,

“Build me life but don’t use
any modern chemicals or instruments.

Build me stuff that was here
three billion years ago.

You can’t use lasers.
You can’t use this. You can’t use that.”

He gave me a vial of what he’s built
about three weeks ago.

What has he built?

He’s built basically what looked like
soap bubbles that are made out of lipids.

He’s built a precursor of RNA.

He’s had the precursor of the RNA
be absorbed by the cell

and then he’s had the cells divide.

We may not be that far –

call it a decade, maybe two decades –

from generating life from scratch

out of proto-communities.

Second long-term trend:

we’ve been living and are living
through the digital age –

we’re starting to live through
the age of the genome

and biology and CRISPR
and synthetic biology –

and all of that is going to merge
into the age of the brain.

So we’re getting to the point where
we can rebuild most of our body parts,

in the same way as if you break a bone
or burn your skin, it regrows.

We’re beginning to learn
how to regrow our tracheas

or how to regrow our bladders.

Both of those have been
implanted in humans.

Tony Atala is working on
32 different organs.

But the core is going to be this,

because this is you
and the rest is just packaging.

Nobody’s going to live beyond
120, 130, 140 years

unless if we fix this.

And that’s the most interesting challenge.

That’s the next frontier, along with:

“How common is life in the universe?”

“Where did we come from?”

and questions like that.

Let me end this with
an apocryphal quote from Einstein.

[You can live as if
everything is a miracle,

or you can live as if
nothing is a miracle.]

It’s your choice.

You can focus on the bad,
you can focus on the scary,

and certainly there’s
a lot of scary out there.

But use 10 percent of your brain
to focus on that, or maybe 20 percent,

or maybe 30 percent.

But just remember,

we really are living in an age
of miracle and wonder.

We’re lucky to be alive today.
We’re lucky to see this stuff.

We’re lucky to be able to interact
with folks like the folks

who are building
all the stuff in this room.

So thank you to all of you,
for all you do.

(Applause)

因此,让我从 Roy Amara 开始。

Roy 的论点是,大多数新
技术一开始往往会被

高估,

但从长远来看,它们会被低估

因为我们已经习惯了它们。

这些真的
是奇迹和奇迹的日子。

你还记得
保罗西蒙那首美妙的歌曲吗?

里面有两行。

那么,当时被认为是
奇迹的是什么?

放慢速度——慢动作——

和长途电话。

因为,当然,你
经常被接线员打断,

他们会告诉你,“长途电话。
你想挂断电话吗?”

现在我们对打电话
到世界各地都毫不在意。

好吧,阅读和编程生活中可能会发生类似的事情

但在我打开包装之前,

让我们先谈谈望远镜。

望远镜
最初的影响被高估了。

这是伽利略的早期模型之一。

人们认为它
只会毁掉所有的宗教。

(笑声)

所以我们并没有那么
关注望远镜。

但是,当然,10 年前发射的望远镜
,正如你刚才所听到的

,可以把这辆大众汽车
带到月球上

,你可以
看到大众汽车上的灯在月球上亮起。

正是这种分辨率
让你可以看到

漂浮在遥远太阳周围的小尘埃。

想象一下,这
是一个 10 亿光年外的太阳,

而你的前面有一粒尘埃

这就是探测系
外行星的过程。

很酷的是
,现在正在发射的望远镜

可以让你看到
月球上点燃的一根蜡烛。

如果你把它隔开一个盘子,

你可以
在那个距离看到两根蜡烛。

这就是
你需要的那种分辨率,你

需要开始对

太阳周围的那个小尘埃进行成像

,看看它是否有蓝绿色的特征。

如果它确实
有蓝绿色的特征,

那就意味着生命
在宇宙中很常见。

当你第一次
在遥远的星球上看到蓝绿色的标志时,

这意味着那里有光合作用,

那里有水

,你
看到唯一有光合作用的另一颗行星的机会

大约为零。

这是一个改变日历的事件。

我们在宇宙中独处之前和之后:

忘记
发现任何大陆。

因此,当您考虑这一点时,

我们现在开始
能够对宇宙的大部分进行成像。

那是一个奇迹和奇迹的时代。

我们有点认为这是理所当然的。

生活中也在发生类似的事情。

所以我们
在这些点点滴滴中听到了生活。

我们听说过 CRISPR
,我们听说过这项技术

,我们听说过这项技术。

但生活的底线
是,生活原来是代码。

生命即代码是一个非常
重要的概念,因为它意味着,

就像
你可以

用英语或法语或中文写一个句子

一样,
就像你可以复制一个句子一样,

就像 你可以编辑一个句子,

就像你可以打印一个句子一样,

你开始能够
在生活中做到这一点。

这意味着我们
开始学习如何阅读这种语言。

当然,
这就是这个橙子使用的语言。

那么这个橙子是如何执行代码的呢?

它不像计算机那样以 1 和 0 来
执行。

它坐在一棵树上,有一天它确实做到了:

扑通!

这意味着:执行。

AATCAAG:让我成为一个小根。

TCGACC:给我做个小梗。

GAC:给我一些叶子。
AGC:给我一些花。

然后 GCAA:再给我一些橙子。

如果我在文字处理器上编辑一个英文句子,

那么你可以
从这个词转到那个词。

如果我在这个橙子中编辑一些东西

并放入 GCAAC,使用 CRISPR
或你听说过的其他东西,

那么这个橙子就变成了柠檬,

或者变成了葡萄柚,

或者变成了橘子。

如果我编辑千分之一的信件,

你就会成为
今天坐在你旁边的人。

坐的地方要多加小心。

(笑声

) 发生在这些东西上的
是,一开始真的很贵。

就像打长途电话一样。

但其成本下降的
速度比摩尔定律快 50%。

Veritas 昨天宣布了第一个 200 美元的全基因
组。

因此,当您查看这些系统时,

没关系,没关系,
没关系,然后就可以了。

所以让我给你
这个东西的地图视图。

这是一个重大发现。

有23条染色体。

凉爽的。

现在让我们开始使用望远镜版本,
但不是使用望远镜,而是

使用显微镜放大

这些染色体的劣质染色体,

即 Y 染色体。

它的大小是 X 的三分之一。
它是隐性的和突变的。

但是,嘿,

只是一个男性。

当你在看这些东西时,

这是

一个 400 碱基对分辨率水平的国家视图,

然后你放大到 550,
然后你放大到 850

,你可以开始识别
越来越多的基因 当你放大。

然后你放大到州级

,你可以开始告诉
谁得了白血病,

他们是怎么得的白血病,他们得了
什么白血病,

从什么地方转移
到什么地方。

然后放大
到 Google 街景级别。

因此,
如果您

在逐个字母的解决方案中针对非常特定的患者患有结肠直肠癌,就会发生这种情况。

所以我们在这方面所做的
是我们正在收集信息

并产生
大量信息。

这是地球上最大的
数据库之一

,它的增长速度
超过了我们建造计算机来存储它的速度。

你可以用这些东西创建一些令人难以置信的
地图。

你想了解瘟疫
,为什么一种瘟疫是腺鼠疫

,另一种
是另一种瘟疫

,另一种
是另一种瘟疫?

好吧,这里有一张瘟疫地图。

有些对人类绝对是致命的,

有些则不是。

请注意,顺便说一下,
当您深入

了解它时,它与肺结核相比如何?

所以这就是
肺结核和各种瘟疫的区别

,你可以
用这个玩侦探,

因为你可以拿
一种影响海地的非常特殊的霍乱

,你可以看看
它来自哪个国家,

哪个地区 来自

,可能是哪个士兵
从那个非洲国家带到海地的。

缩小。

这不仅仅是放大。

这是人类有史以来最酷的地图
之一。

他们所做的是获取
他们拥有的

关于所有物种的所有遗传信息,

并将生命之树
放在一个页面

上,您可以放大和缩小。

所以这是最先出现的,
它是如何多样化的,它

是如何分支的,基因组有多大,

在一页上。

它有点像
地球上的生命宇宙

,它在不断
更新和完善。

所以当你看到这些东西时

,真正重要的变化
是旧的生物学曾经是反应性的。

你曾经有很多
生物学家有显微镜

,他们有放大镜
,他们出去观察动物。

新的生物学是主动的。

你不只是观察东西,
你制造东西。

这是一个非常大的变化,

因为它允许
我们做这样的事情。

我知道你对
这张照片很兴奋。

(笑声)

我们只花了四年时间
和四千万美元

就能拍到这张照片。

(笑声

) 我们所做的

是我们
从一个细胞中取出完整的基因代码——

不是一个基因,不是两个基因,而是
一个细胞的完整基因代码——

构建一个全新的基因代码,

将其插入细胞中 ,

找到了一种让细胞
执行该代码

并构建一个全新物种的方法。

所以这是世界上第一个
合成生命形式。

那么你用这些东西做什么呢?

好吧,这些东西
将改变世界。

让我给你三个

关于它将
如何改变世界的短期趋势。

首先是我们将看到
一场新的工业革命。

我实际上是字面上的意思。

所以就像瑞士
、德国和英国


你在这个大厅里看到的那样的机器改变了世界,

创造了力量

——就像欧洲核子研究中心
正在改变世界,

使用新的仪器
和我们的宇宙概念——

可编程生命形式
也将改变世界,

因为一旦你可以

像编写计算机芯片一样对细胞进行
编程,

那么你几乎可以制造任何东西。

所以你的计算机芯片
可以产生照片,

可以产生音乐,可以产生电影,

可以产生情书,
可以产生电子表格。

它只是飞过那里的一和零

如果您可以通过单元传输 ATCG,

那么该软件可以制造自己的硬件,

这意味着它可以非常快速地扩展。

不管发生什么,

如果你把
手机放在床边,早上

你不会有十亿部
手机。

但是如果你用活的有机体

来做这件事,你就可以
大规模地制造这种东西。

您可以做的一件事
是,到 2025 年,您可以开始以商业规模生产

接近碳中和的燃料

,我们正在与埃克森美孚合作。

但你也可以
用农田代替。

您可以在这些大桶中

以每公顷 10 或 100 倍
的生产率生产,而不用 100 公顷来生产油或生产蛋白质。

或者你可以存储信息,
或者你可以在这三个大桶中制造世界上所有的疫苗

或者,您可以将
CERN 保存的大部分信息存储在这三个大桶中。

DNA 是一个非常强大的
信息存储设备。

第二个转折点:

你开始看到
理论生物学的兴起。

因此,医学院系是
地球上最保守的地方之一。

他们教授解剖学的方式与 100 年前教授解剖学的方式相似

“欢迎,学生。这是你的尸体。”

医学院
不擅长的一件事是创建新部门,

这就是为什么这很不寻常。

Isaac Kohane 现在在哈佛医学院创建了一个
基于信息学、数据和知识的部门

从某种意义上说,
开始发生的是

生物学开始获得足够的数据

,它可以开始遵循
物理学的步骤

,以前是观察物理学

和实验物理学家,

然后开始创造
理论生物学。

嗯,这就是你开始看到的,

因为你有很多医疗记录,

因为你有
很多关于人的数据:

你有他们的基因组,
你有他们的病毒组,

你有他们的微生物组。

随着这些信息的堆积,

您可以开始做出预测。

正在发生的第三件事
是它正在向消费者传递。

因此,您也可以对您的基因进行测序。

这开始创建
像 23andMe 这样的公司,像 23andMe 这样的

公司将给

越来越多的数据,

不仅仅是关于你的亲戚,

还有关于你和你的身体

,它会比较东西

,它会
跨时间比较东西

,这些将成为
非常大的数据库。

但它也开始以意想不到的方式影响
一系列其他业务

通常,当你做广告时,
你真的不希望消费者

把你的广告
带到浴室里撒尿。

当然,除非你是宜家。

因为当你
从杂志上撕下它并在上面撒尿时,

如果你怀孕了,它会变成蓝色。

(笑声

) 他们会给
你的婴儿床打折。

(笑声)

对吧? 因此,当我说消费者赋权时

,这已经超越了生物技术,

我的意思是真的。

我们现在开始
在 Synthetic Genomics 生产

桌面打印机

,让您可以设计细胞、

打印细胞、

在细胞上执行程序。

我们现在可以

在飞机起飞

前在降落前实时打印疫苗。

今年我们将运送 78
台这样的机器。

这不是理论生物学。
这是印刷生物学。

让我谈谈


较长时期内出现的两个长期趋势。

第一个是,我们开始
重新设计物种。

你听说过,对吧?

我们正在重新设计树木。
我们正在重新设计鲜花。

我们正在重新设计酸奶、

奶酪,无论您想要什么。

当然,这
带来了一个有趣的问题:

我们应该如何以及何时重新设计人类?

我们很多人认为,
“哦,不,我们永远不想重新设计人类。”

当然,除非你的孩子
有亨廷顿基因

并被判处死刑。

或者,除非您正在
传递囊性纤维化基因,

在这种情况下,您不仅要
重新设计自己

,还想重新设计您的孩子
和他们的孩子。

这些都是复杂的辩论
,它们将实时发生。

我给你一个当前的例子。

今天在美国国家科学院进行的辩论之一

是,你有能力
将基因驱动植入蚊子,

这样你就可以杀死
所有携带疟疾的蚊子。

现在,有人说,

“这会对环境
造成极端的影响,不要这样做。”

其他人说,

“这是
每年杀死数百万人的事情之一。

你凭什么告诉
我我无法拯救我国家的孩子?”

为什么这场辩论如此复杂?

因为一旦你
在巴西

或佛罗里达州南部放开它——

蚊子就不会尊重墙壁。

当您将基因驱动器投放到空中时,您正在为世界做出决定。

这位了不起的人获得了诺贝尔奖

,获得诺贝尔奖后,

他一直在担心

这个星球上的生命是如何开始的

,它在其他地方的可能性有多大?

所以他一直在做的是围绕
着这个研究生

,对他的研究生说,

“给我造生命,但不要使用
任何现代化学物质或仪器。

给我造
30亿年前的东西。

你不能用 激光。
你不能用这个。你不能用那个。”

他给了我一小瓶他大约三周前建造的东西

他建造了什么?

他基本上制造了看起来像
由脂质制成的肥皂泡。

他建立了RNA的前体。

他让 RNA 的前体
被细胞吸收

,然后让细胞分裂。 从原始社区从头开始创造生命,

我们可能不会那么远

——称之为十年,也许是二十年

第二个长期趋势:

我们一直生活
在数字时代——

我们开始生活
在基因组

、生物学、CRISPR
和合成生物学的时代

——所有这些都将融合
到 大脑的年龄。

所以我们已经到了
可以重建大部分身体部位

的地步,就像你折断骨头
或烧伤皮肤一样,它会重新生长。

我们开始学习
如何再生气管

或如何再生膀胱。

两者都已
植入人体。

Tony Atala 正在研究
32 个不同的器官。

但核心将是这个,

因为这是你
,其余的只是包装。 除非我们解决这个问题,否则

没人能活到
120、130、140 岁

这是最有趣的挑战。

这是下一个前沿,还有:

“宇宙中的生命有多普遍?”

“我们是从哪里来的?”

和类似的问题。

让我用
爱因斯坦的一句杜撰来结束这一切。

[你可以活得好像
一切都是奇迹,

或者你可以活得好像
一切都不是奇迹。]

这是你的选择。

你可以专注于坏事,
你可以专注于可怕的事情

,当然
还有很多可怕的事情。

但是用你大脑的 10%
来专注于那个,或者可能是 20%,

或者可能是 30%。

但请记住,

我们真的生活在一个充满
奇迹和奇迹的时代。

我们很幸运今天还活着。
我们很幸运能看到这些东西。

我们很幸运能够
与像

在这个房间里建造所有东西的人这样的人互动。

所以感谢你们所有人,
感谢你们所做的一切。

(掌声)