Why do you need to get a flu shot every year Melvin Sanicas

All year long, researchers at hundreds
of hospitals around the world

collect samples from flu patients

and send them to top virology experts
with one goal:

to design the vaccine
for the next flu season.

But why do we need a new one every year?

Vaccines for diseases like mumps
and rubella offer a lifetime of protection

with two shots early in life.

What’s so special about the flu?

Two factors make the flu a tough target.

First, there are more than 100 subtypes
of the influenza virus,

and the ones in circulation
change from season to season.

And second, the flu’s genetic code
allows it to mutate more quickly

than many other viruses.

The flu spreads by turning a host’s own
cells into viral production factories.

When the virus is engulfed by a host cell,
it expels its genetic material,

which makes its way to the nucleus.

There, cellular machinery that normally
copies the host’s genes

starts replicating viral genes instead,

creating more and more copies
of the virus.

New viruses are repackaged
and crammed into the cell until it bursts,

sending freshly minted influenza viruses
out to infect additional cells.

Most viruses follow this script.

The trick with the flu is that its genetic
material isn’t DNA

but a similar compound called RNA.

And RNA viruses can mutate much faster.

When cells synthesize DNA,

a built-in proofreader recognizes
and corrects mistakes,

but the RNA synthesis mechanism
doesn’t have this fail-safe.

If errors creep in, they stick around
creating new variants of the virus.

Why is this a problem?

Because vaccines depend on recognition.

The flu vaccine includes some of the same
substances, called antigens,

found on the surface of the virus itself.

The body identifies those fragments
as foreign

and responds by producing compounds
called antibodies,

tailor-made to match the antigens.

When a vaccinated person
encounters the actual virus,

the preprogrammed antibodies
help the immune system identify the threat

and mobilize quickly
to prevent an infection.

Those antigens are different
for every strain of influenza.

If vaccination has prepared
the immune system for one strain,

a different one may still
be able to sneak by.

Even within the same strain of flu,

those rapid genetic mutations
can change the surface compounds enough

that the antibodies
may not recognize them.

To make things even more complicated,

sometimes two different strains combine
to create an entirely new hybrid virus.

All of this makes vaccinating for the flu

like trying to hit a moving
transforming target.

That’s why scientists are constantly
collecting data

about which strains are circulating

and checking to see how much those
strains have mutated

from previous years' versions.

Twice annually, the World
Health Organization pulls together experts

to analyze all that data,

holding one meeting for each hemisphere.

The scientists determine which strains
to include in that season’s vaccine,

picking four for the quadrivalent vaccine
in use today.

In spite of the flu’s evasive maneuvers,

in recent years, the group’s predictions
have been almost always correct.

Even when flu strains mutate further,
the vaccine is often close enough

that a vaccinated person who catches
the flu anyway

will have a milder and shorter illness
than they would otherwise.

Vaccination also helps protect
other people in the community

who may not be medically eligible
for the shot

by preventing those around them
from carrying the virus.

This is called herd immunity.

The flu shot can’t give you the flu.

It contains an inactivated virus
that isn’t capable of making you sick.

You might feel tired
and achy after getting it,

but that’s not an infection.

It’s your normal immune response
to the vaccine.

Some parts of the world use,
instead of a shot, an inhaled vaccine

that contains a weakened live virus.

This is also safe for
the vast majority of people.

Only those with impaired immune systems
would be at risk,

but they’re typically
not given live vaccines.

Meanwhile, scientists are working
to develop a universal flu vaccine

that would protect against any strain,
even mutated ones.

But until then, the hunt
for next year’s vaccine is on.

全年,
全球数百家医院的研究人员

收集流感患者的样本

,并将其发送给顶级病毒学专家
,目标是:

为下一个流感季节设计疫苗。

但是为什么我们每年都需要一个新的呢?

流行性腮腺炎和风疹等疾病的
疫苗可

在生命早期注射两次疫苗,从而提供终生保护。

流感有什么特别之处?

有两个因素使流感成为一个艰难的目标。

首先,流感病毒有100多种
亚型,

而且流通的亚型
随季节变化。

其次,流感的遗传密码
使它

比许多其他病毒变异得更快。

流感通过将宿主自身的
细胞变成病毒生产工厂来传播。

当病毒被宿主细胞吞噬时,
它会排出其遗传物质,

从而进入细胞核。

在那里,通常
复制宿主基因的细胞机器

开始复制病毒基因,

从而产生越来越多
的病毒副本。

新病毒被重新包装
并塞入细胞中,直到它破裂,

将新鲜产生的流感病毒发送
出去以感染其他细胞。

大多数病毒都遵循此脚本。

流感的诀窍在于它的遗传
物质不是 DNA,

而是一种称为 RNA 的类似化合物。

RNA病毒可以更快地变异。

当细胞合成 DNA 时

,内置的校对器会识别
并纠正错误,

但 RNA 合成机制
没有这种故障安全机制。

如果错误蔓延,他们会继续
制造新的病毒变种。

为什么这是个问题?

因为疫苗取决于识别。

流感疫苗包括一些

在病毒本身表面发现的相同物质,称为抗原。

身体将这些片段识别
为外来物,

并通过产生称为抗体的化合物来做出反应,这种化合物是

量身定制的以匹配抗原。

当接种疫苗的人
遇到真正的病毒时

,预编程的抗体会
帮助免疫系统识别威胁

并迅速动员
起来预防感染。

这些抗原
对于每种流感病毒株都是不同的。

如果疫苗接种已经
为一种毒株做好了免疫系统的准备,

那么另一种毒株可能仍然
能够偷偷溜走。

即使在同一株流感病毒中,

那些快速的基因突变
也会改变表面化合物,

以至于抗体
可能无法识别它们。

更复杂的是,

有时两种不同的毒株结合
起来会产生一种全新的混合病毒。

所有这些都使得接种流感疫苗

就像试图击中一个移动的
转化目标。

这就是为什么科学家们不断
收集

有关哪些菌株正在传播的数据,

并检查这些
菌株

与前几年的版本相比发生了多少变异。

世界卫生组织每年
两次召集

专家分析所有数据,

每个半球召开一次会议。

科学家们确定
了该季节疫苗中包含哪些毒株,

挑选了四种用于今天使用的四价
疫苗。

尽管流感采取了规避手段,但

近年来,该组织的预测
几乎总是正确的。

即使流感毒株进一步变异
,疫苗通常也足够接近,

以至于无论如何感染流感的接种疫苗的人

都会比其他人患上更温和、更短的疾病

接种疫苗还可以防止周围的人携带病毒,从而帮助保护
社区

中可能没有医学
资格接种疫苗

的其他人

这被称为群体免疫。

流感疫苗不会让你感冒。

它含有
一种不能使您生病的灭活病毒。 感染后

您可能会感到疲倦
和疼痛,

但这不是感染。

这是您
对疫苗的正常免疫反应。

世界上的一些地方使用含有弱化活病毒
的吸入疫苗,而不是注射疫苗

这对绝大多数人来说也是安全
的。

只有那些免疫系统受损的人才
会处于危险之中,

但他们通常
不会接种活疫苗。

与此同时,科学家们正在
努力开发一种通用流感疫苗

,该疫苗可以防止任何毒株,
甚至是变异的毒株。

但在那之前,
寻找明年的疫苗的工作仍在进行。