How does hibernation work Sheena Lee Faherty

Onboard the spacecraft,
the astronauts preset the timer,

enclose themselves in capsules,

and fall into a deep hibernation

that’ll carry them several
hundred years into the future.

This is a familiar scene
in many sci-fi films,

but could humans ever actually
hibernate in real life?

Researchers interested in this question
turn to the animal kingdom,

where hibernation is commonplace,

occurring in over 200 species
that we know of.

Take the Arctic ground squirrel.

Native to the North American tundra
and northern Russia,

this animal burrows
beneath the permafrost

and slips into a state
of suspended animation,

its body temperature plummeting
to a frigid -2.9 degrees Celsius.

Others, like the female black bear,
can multitask,

giving birth and lactating while they’re
hibernating through the winter.

The fat-tailed dwarf lemur prepares
for its long dormancy

by gorging on food and storing the
majority of its fat reserves in its tail,

doubling its body weight.

After hibernation, it emerges looking
as svelte as ever.

So why do these animals
go to such extremes?

Hibernation is a necessity,

a survival tactic for making it
through the harsh winter months

when dwindling food
and water reserves threaten survival.

For many years, experts believed
hibernation happened

only in arctic and temperate environments.

But more recently, they’ve discovered
animals hibernating

even in arid deserts
and tropical rainforests.

As hibernation kicks in,

animals’ heartbeats usually slow to
about 1 to 3% of their original speed,

like the dwarf lemur’s,

which drops from its usual
roughly 180 beats per minute

to just around four.

Breathing also declines dramatically

to just one breath every 10 to 21 minutes
in the lemur’s case.

And black bears, like most hibernators,

don’t urinate
or defecate the entire hibernation season.

Hibernating animals appear to stay alive

by having just enough blood
and oxygen moving around their bodies.

And scans of hibernating animals
reveal that their brain activity

has just about flat-lined.

But hibernation isn’t a long winter’s nap.

As far as researchers know,

in lemurs and
ground squirrels anyway,

the animals aren’t even
sleeping for most of it.

Hibernation is actually made up of regular
bouts of reduced metabolic rate

and body temperature known as torpor.

Animals can be in torpor
for a few days to five weeks,

after which they resume normal
metabolic rate and body temperature

for about 24 hours,

before going back into torpor again.

The phenomenon is known
as an interbout arousal,

and why it occurs is still a mystery.

The behaviors inherent in hibernation,

like going five weeks without sleep,

or dropping to
near-freezing body temperatures

would be potentially fatal
to non-hibernating species like us.

To find out how hibernators
are able to do this,

researchers turned their attention
to those animal’s genomes.

So far, they’ve discovered that
hibernation is controlled by genes

that turn off and on in
unique patterns throughout the year,

fine-tuning the hibernator’s physiology
and behavior.

For example, ground squirrel, bear
and dwarf lemur studies

have revealed that these
animals are able to turn on the genes

that control fat metabolism

precisely when they need to use
their fat stores

as fuel to survive
long periods of fasting.

And the genes in question
are present in all mammals,

which means that researchers could
study hibernating mammals

to see how their unique control
of physiology might help humans.

Understanding how hibernators deal
with reduced blood flow

could lead to better treatments
for protecting the brain during a stroke.

Figuring out how these animals avoid
muscle deterioration

might improve the lives
of bedridden patients.

And studying how hibernating animals
control their weight with ease

could illuminate the relationship between
metabolism and weight gain in humans.

And yes, more research in this area

might someday make
human hibernation a real possibility.

Imagine our surprise if the key to
intergalactic travel

turns out to be ground squirrels,
black bears, and dwarf lemurs.

在航天器上
,宇航员预设了计时器,

将自己封闭在太空舱中,

然后进入深度冬眠

,这将带他们
进入数百年的未来。


是许多科幻电影中熟悉的场景,

但人类真的可以
在现实生活中冬眠吗?

对这个问题感兴趣的研究人员
转向动物王国,

在那里冬眠是司空见惯的,

在我们所知的 200 多种物种
中都会发生。

以北极地松鼠为例。 这种动物

原产于北美苔原
和俄罗斯北部,

在永久冻土下挖洞

并滑入
假死状态

,体温骤降
到寒冷的 -2.9 摄氏度。

其他的,比如雌性黑熊,
可以在冬眠期间同时进行多项任务,

分娩和哺乳

肥尾侏儒狐猴

通过吞食食物并将
大部分脂肪储备储存在尾巴中,

使其体重增加一倍,从而为其长期休眠做准备。

冬眠后,它看起来
像以前一样苗条。

那么为什么这些动物
会走向如此极端呢?

冬眠是必要的,

是一种生存策略,可以

在食物
和水储备减少威胁生存的严冬月份中度过难关。

多年来,专家们认为
冬眠

只发生在北极和温带环境中。

但最近,他们发现
动物

甚至在干旱的沙漠
和热带雨林中也能冬眠。

随着冬眠的开始,

动物的心跳通常会减慢到
其原始速度的 1% 到 3%,

就像侏儒狐猴

的心跳从通常的
每分钟大约 180 次下降

到大约 4 次。 在狐猴的情况下,

呼吸也急剧下降

到每 10 到 21 分钟只呼吸一次

和大多数冬眠者一样,黑熊

在整个冬眠季节都不会小便或排便。

冬眠的动物似乎

通过
在身体周围移动足够的血液和氧气来维持生命。

对冬眠动物的扫描
显示,它们的大脑活动

几乎是平缓的。

但是冬眠并不是漫长的冬天的小睡。

据研究人员所知,无论如何,

在狐猴和
地松鼠中,

这些动物甚至
大部分时间都没有睡觉。

冬眠实际上是由代谢率和体温的定期降低组成的,

称为麻木。

动物可以处于麻木
状态几天到五周,

之后它们会恢复正常的
代谢率和

体温约 24 小时,

然后再次进入麻木状态。

这种现象被
称为间歇性唤醒

,为什么会发生这种现象仍然是个谜。

冬眠中固有的行为,

比如五周不睡觉,

或者
体温降到接近冰点,

对我们这样的非冬眠物种来说可能是致命的。

为了找出冬眠者
是如何做到这一点的,

研究人员将注意力转向了
这些动物的基因组。

到目前为止,他们发现
冬眠是由基因控制的,这些基因

全年以独特的模式开关,

微调冬眠者的生理
和行为。

例如,地松鼠、熊
和侏儒狐猴的研究

表明,这些
动物能够

在需要
使用脂肪储存

作为燃料来维持
长时间禁食时,精确地开启控制脂肪代谢的基因。

这些基因
存在于所有哺乳动物中,

这意味着研究人员可以
研究冬眠的哺乳动物

,看看它们对生理的独特控制
如何帮助人类。

了解冬眠者如何
应对血流减少

可能会导致更好的治疗方法
来保护中风期间的大脑。

弄清楚这些动物如何避免
肌肉退化

可能会改善
卧床不起的病人的生活。

研究冬眠动物如何
轻松控制体重

可以阐明
人类新陈代谢与体重增加之间的关系。

是的,这一领域的更多研究

可能有朝一日使
人类冬眠成为真正的可能性。

想象一下,如果星际旅行的关键

是地松鼠、
黑熊和矮狐猴,我们会感到惊讶。