Why do we harvest horseshoe crab blood Elizabeth Cox

During the warmer months,
especially at night during the full moon,

horseshoe crabs emerge
from the sea to spawn.

Waiting for them are teams
of lab workers

who capture the horseshoe crabs
by the hundreds of thousands,

take them to labs,

harvest their cerulean blood,

then return them to the sea.

Oddly enough, we capture horseshoe crabs
on the beach

because that’s the only place
we know we can find them.

A female horseshoe crab lays as many
as 20 batches of up to 4,000 eggs

on her annual visit to the beach.

When the eggs hatch,

the juvenile horseshoe crabs
often stay near shore,

periodically shedding their shells
as they grow.

Once they leave
these shallow waters,

they don’t return until they
reach sexual maturity ten years later.

Despite our best efforts, we don’t
know where they spend those years.

Though we’ve spotted the occasional
horseshoe crab

as deep as 200 meters below
the ocean’s surface,

we only see large groups of adults
when they come ashore to spawn.

Horseshoe crab blood contains
cells called amebocytes

that protect them
from infection by viruses,

fungi,

and bacteria.

Amebocytes form gels around
these invaders

to prevent them from spreading infections.

This isn’t unusual.

All animals have protective
immune systems.

But horseshoe crab amebocytes
are exceptionally sensitive

to bacterial endotoxins.

Endotoxins are molecules
from the cell walls of certain bacteria,

including E. coli.

Large amounts of them are released
when bacterial cells die,

and they can make us sick
if they enter the blood stream.

Many of the medicines and medical devices
we rely on can become contaminated,

so we have to test them
before they touch our blood.

We do have tests called Gram stains
that detect bacteria,

but they can’t recognize endotoxins

which can be there even when
bacteria aren’t present.

So scientists use an extract called LAL

produced from harvested
horseshoe crab blood

to test for endotoxins.

They add LAL to a medicine sample,
and if gels form,

bacterial endotoxins are present.

Today, the LAL test is used so widely

that millions of people who’ve
never seen a horseshoe crab

have been protected by their blood.

If you’ve ever had an injection,
that probably includes you.

How did horseshoe crabs end up
with such special blood?

Like other invertebrates,

the horseshoe crab has an open
circulatory system.

This means their blood isn’t contained
in blood vessels, like ours.

Instead, horseshoe crab blood
flows freely through the body cavity

and comes in direct contact with tissues.

If bacteria enters their blood,
it can quickly spread over a large area.

Pair this vulnerability

with the horseshoe crab’s bacteria-filled
ocean and shoreline habitats,

and it’s easy to see why they need
such a sensitive immune response.

Horseshoe crabs survived
mass extinction events

that wiped out over 90% of life on Earth
and killed off the dinosaurs,

but they’re not invincible.

And the biggest disruptions they’ve faced
in millions of years come from us.

Studies have shown that up to
15% of horseshoe crabs

die in the process of having
their blood harvested.

And recent research suggests
this number may be even higher.

Researchers have also observed
fewer females returning to spawn

at some of the most harvested areas.

Our impact on horseshoe crabs extends
beyond the biomedical industry, too.

Coastal development
destroys spawning sites,

and horseshoe crabs are also
killed for fishing bait.

There’s ample evidence that
their populations are shrinking.

Some researchers have started working

to synthesize horseshoe crab
blood in the lab.

For now, we’re unlikely to stop
our beach trips,

but hopefully, a synthetic alternative
will someday eliminate our reliance

on the blood of these ancient creatures.

在温暖的月份,
特别是在满月的晚上,


从海里出来产卵。

等待他们的是
一群实验室工作

人员,他们
将数十万只鲎捕获,

带到实验室,

采集它们蔚蓝的血液,

然后将它们送回大海。

奇怪的是,我们
在海滩上捕捉鲎,

因为这是我们知道的唯一
可以找到它们的地方。

一只雌性鲎每年到访海滩时会产
下多达 20 批多达 4,000 个

卵。

当卵孵化时

,幼年的鲎
经常待在岸边,随着它们的生长

定期脱落它们的壳

一旦它们离开
这些浅水区,

它们直到
十年后达到性成熟才会返回。

尽管我们尽了最大的努力,但我们不
知道他们在哪里度过了那些年。

虽然我们偶尔会在海面

以下 200 米深的地方发现鲎

但我们只看到成群结队的
成年鲎上岸产卵。

马蹄蟹的血液中含有一种
叫做变形细胞的细胞

,可以保护它们
免受病毒、

真菌

和细菌的感染。

阿米巴细胞在这些入侵者周围形成凝胶,

以防止它们传播感染。

这并不罕见。

所有动物都有保护性
免疫系统。

但鲎变形细胞

对细菌内毒素异常敏感。

内毒素是
来自某些细菌(

包括大肠杆菌)细胞壁的分子。 当细菌细胞死亡时

会释放出大量的它们

,如果它们进入血液,就会使我们生病
。 我们所依赖的

许多药物和医疗设备
都可能受到污染,

因此我们必须
在它们接触我们的血液之前对其进行测试。

我们确实有检测细菌的称为革兰氏染色的测试

但它们无法识别

即使不存在细菌也可能存在的内毒素

因此,科学家们使用一种

从收获的
鲎血中提取的 LAL 提取物

来检测内毒素。

他们将 LAL 添加到药物样品中
,如果形成凝胶,

则存在细菌内毒素。

今天,鲎试剂测试被广泛

使用,数以百万计
从未见过鲎的

人得到了血液的保护。

如果你曾经注射过,
那可能包括你。

马蹄蟹怎么
会有如此特殊的血液?

像其他无脊椎动物一样

,鲎具有开放的
循环系统。

这意味着他们的血液
不像我们的那样包含在血管中。

相反,鲎的血液
自由地流过体腔

并与组织直接接触。

如果细菌进入他们的血液,
它会迅速传播到大面积。

将这种脆弱性

与马蹄蟹充满细菌的
海洋和海岸线栖息地结合起来

,很容易看出它们为什么需要
如此敏感的免疫反应。

马蹄蟹在大规模灭绝事件中幸存下来,这些
事件

消灭了地球上超过 90% 的生命
并杀死了恐龙,

但它们并不是无敌的。

他们
数百万年来面临的最大破坏来自我们。

研究表明,多达
15% 的鲎

在采血过程中死亡

最近的研究表明,
这个数字可能更高。

研究人员还观察到

在一些收获最多的地区返回产卵的雌性较少。

我们对马蹄蟹的影响也
超出了生物医学行业。

沿海开发
破坏了产卵地

,马蹄蟹也
被杀死作为鱼饵。

有充分的证据表明
他们的人口正在减少。

一些研究人员已经开始在实验室

中合成鲎
血。

目前,我们不太可能停止
我们的海滩旅行,

但希望有一天,一种合成替代品
将消除我们对

这些古老生物血液的依赖。