Are we living in a simulation Zohreh Davoudi

We live in a vast universe,
on a small wet planet,

where billions of years ago

single-celled life forms evolved
from the same elements

as all non-living material
around them,

proliferating and radiating into an
incredible ray of complex life forms.

All of this— living and inanimate,
microscopic and cosmic—

is governed by mathematical laws with
apparently arbitrary constants.

And this opens up a question:

If the universe is completely governed
by these laws,

couldn’t a powerful enough computer
simulate it exactly?

Could our reality actually be an
incredibly detailed simulation

set in place by a much more
advanced civilization?

This idea may sound like science fiction,

but it has been the subject
of serious inquiry.

Philosopher Nick Bostrom advanced
a compelling argument

that we’re likely living in a simulation,

and some scientists also think
it’s a possibility.

These scientists have started thinking
about experimental tests

to find out whether our
universe is a simulation.

They are hypothesizing about what the
constraints of the simulation might be,

and how those constraints could lead
to detectable signs in the world.

So where might we look for those glitches?

One idea is that as a simulation runs,

it might accumulate errors over time.

To correct for these errors

the simulators could adjust the constants
in the laws of nature.

These shifts could be tiny—

for instance,

certain constants we’ve measured
with accuracies of parts per million

have stayed steady for decades,

so any drift would have to be
on an even smaller scale.

But as we gain more precision in our
measurements of these constants,

we might detect slight changes over time.

Another possible place to look comes from
the concept that finite computing power,

no matter how huge,
can’t simulate infinities.

If space and time are continuous,

then even a tiny piece of the universe
has infinite points

and becomes impossible to simulate
with finite computing power.

So a simulation would have to represent
space and time in very small pieces.

These would be almost
incomprehensibly tiny.

But we might be able to search for them

by using certain subatomic
particles as probes.

The basic principle is this:
the smaller something is,

the more sensitive it will
be to disruption—

think of hitting a pothole on a skateboard
versus in a truck.

Any unit in space-time would be so small

that most things would travel through it
without disruption—

not just objects large enough to be
visible to the naked eye,

but also molecules, atoms,
and even electrons

and most of the other subatomic
particles we’ve discovered.

If we do discover a tiny unit in
space-time

or a shifting constant in a natural law,

would that prove the universe
is a simulation?

No— it would only be the
first of many steps.

There could be other explanations
for each of those findings.

And a lot more evidence would be needed
to establish the simulation hypothesis

as a working theory of nature.

However many tests we design,

we’re limited by some assumptions
they all share.

Our current understanding of the natural
world on the quantum level

breaks down at what’s known
as the planck scale.

If the unit of space-time is
on this scale,

we wouldn’t be able to look for it
with our current scientific understanding.

There’s still a wide range of things

that are smaller than what’s
currently observable

but larger than the planck
scale to investigate.

Similarly, shifts in the constants of
natural laws could occur so slowly

that they would only be observable
over the lifetime of the universe.

So they could exist even if we don’t
detect them

over centuries or millennia
of measurements.

We’re also biased towards thinking that
our universe’s simulator, if it exists,

makes calculations the same way we do,

with similar computational limitations.

Really, we have no way of knowing

what an alien civilization’s constraints
and methods would be—

but we have to start somewhere.

It may never be possible to prove
conclusively that the universe either is,

or isn’t, a simulation,

but we’ll always be pushing science and
technology forward

in pursuit of the question:

what is the nature of reality?

我们生活在广阔的宇宙中,
在一个潮湿的小星球上

,数十亿年前,

单细胞生命形式
从与周围

所有非生命物质相同的元素进化
而来,

增殖并辐射成
令人难以置信的复杂生命形式。

所有这一切——有生命的和无生命的、
微观的和宇宙的——

都受到数学定律的支配,这些定律
显然是任意常数。

这就提出了一个问题:

如果宇宙完全
受这些定律支配,

那么一台足够强大的计算机就不能
准确地模拟它吗?

我们的现实真的会是

一个由更
先进的文明设置的极其详细的模拟吗?

这个想法可能听起来像科幻小说,

但它一直
是认真研究的主题。

哲学家尼克博斯特罗姆提出
了一个令人信服的论点

,即我们很可能生活在模拟中

,一些科学家也认为
这是一种可能性。

这些科学家已经开始考虑
进行实验测试,

以确定我们的
宇宙是否是一个模拟。

他们正在假设
模拟的约束可能是什么,

以及这些约束如何
导致世界上可检测到的迹象。

那么我们可以在哪里寻找这些故障呢?

一个想法是,当模拟运行时,

它可能会随着时间的推移累积错误。

为了纠正这些

错误,模拟器可以调整
自然法则中的常数。

这些变化可能很小——

例如,

我们
以百万分之

几的精度测量的某些常数几十年来一直保持稳定,

因此任何漂移都必须
在更小的范围内。

但是随着我们对这些常数的测量获得更高的精度,

我们可能会随着时间的推移检测到细微的变化。

另一个可能的地方来自于
有限的计算能力,

无论多么巨大,
都无法模拟无穷大的概念。

如果空间和时间是连续的,

那么即使是宇宙的一小部分
也有无限的点


用有限的计算能力是不可能模拟的。

因此,模拟必须
以非常小的片段来表示空间和时间。

这些几乎是
难以理解的微小。

但我们或许可以

通过使用某些亚原子
粒子作为探针来寻找它们。

基本原则
是:物体越小,

对破坏就越敏感——

想想在滑板上撞到坑洼
而不是在卡车上撞到坑洞。

时空中的任何单位都会如此之小

,以至于大多数事物都可以毫无中断地穿过它——

不仅是大
到肉眼可见的物体,

还有分子、原子,
甚至电子

以及
我们所拥有的大多数其他亚原子粒子 已经发现。

如果我们确实在时空中发现了一个微小的单位,

或者在自然法则中发现了一个移动常数,

这是否能证明宇宙
是一个模拟?

不——这只是
许多步骤中的第一步。

对于这些发现中的每一个,都可能有其他解释。

并且需要更多的证据
来建立模拟假设

作为自然的工作理论。

无论我们设计多少测试,

我们都会受到
它们都共有的一些假设的限制。

我们目前
在量子水平上对自然世界的理解

在所谓的普朗克尺度上被打破了

如果时空单位
在这个尺度上,

以我们目前的科学理解,我们将无法寻找它。

还有很多东西


目前可观察到的要小,

但比普朗克
尺度要大。

同样,自然法则常数的变化
可能发生得如此缓慢

,以至于它们只能
在宇宙的整个生命周期中被观察到。

因此,即使我们

在数百年或数千年
的测量中没有发现它们,它们也可能存在。

我们也偏向于认为
我们的宇宙模拟器(如果存在的话)

会以与我们相同的方式进行计算,但

具有类似的计算限制。

真的,我们无法

知道外星文明的限制
和方法是什么——

但我们必须从某个地方开始。

也许永远不可能
最终证明宇宙是

或不是一个模拟,

但我们将始终推动科学和
技术向前发展,

以追寻这个问题:

现实的本质是什么?