Who decides how long a second is John Kitching

In 1967, researchers from around the world

gathered to answer
a long-running scientific question—

just how long is a second?

It might seem obvious at first.

A second is the tick of a clock,

the swing of a pendulum,
the time it takes to count to one.

But how precise are those measurements?

What is that length based on?

And how can we scientifically define
this fundamental unit of time?

For most of human history,
ancient civilizations

measured time with unique calendars

that tracked the steady march
of the night sky.

In fact, the second as we know it wasn’t
introduced until the late 1500’s,

when the Gregorian calendar
began to spread across the globe

alongside British colonialism.

The Gregorian calendar defined a day
as a single revolution of the Earth

about its axis.

Each day could be divided into 24 hours,
each hour into 60 minutes,

and each minute into 60 seconds.

However, when it was first defined,

the second was more of a mathematical
idea than a useful unit of time.

Measuring days and hours was sufficient
for most tasks in pastoral communities.

It wasn’t until society became
interconnected

through fast-moving railways that cities
needed to agree on exact timekeeping.

By the 1950’s, numerous global systems
required every second

to be perfectly accounted for,
with as much precision as possible.

And what could be more precise
than the atomic scale?

As early as 1955, researchers began
to develop atomic clocks,

which relied on the unchanging laws
of physics

to establish a new foundation
for timekeeping.

An atom consists of negatively charged
electrons

orbiting a positively charged nucleus
at a consistent frequency.

The laws of quantum mechanics
keep these electrons in place,

but if you expose an atom
to an electromagnetic field

such as light or radio waves,

you can slightly disturb an electron’s
orientation.

And if you briefly tweak an electron
at just the right frequency,

you can create a vibration
that resembles a ticking pendulum.

Unlike regular pendulums that quickly lose
energy, electrons can tick for centuries.

To maintain consistency and make ticks
easier to measure,

researchers vaporize the atoms,

converting them to a less interactive
and volatile state.

But this process doesn’t slow down
the atom’s remarkably fast ticking.

Some atoms can oscillate
over nine billion times per second,

giving atomic clocks an unparalleled
resolution for measuring time.

And since every atom of a given
elemental isotope is identical,

two researchers using the same element
and the same electromagnetic wave

should produce perfectly
consistent clocks.

But before timekeeping could
go fully atomic,

countries had to decide which atom
would work best.

This was the discussion in 1967,

at the Thirteenth General Conference
of the International Committee

for Weights and Measures.

There are 118 elements
on the periodic table,

each with their own unique properties.

For this task, the researchers were
looking for several things.

The element needed to have long-lived

and high frequency electron oscillation
for precise, long-term timekeeping.

To easily track this oscillation,

it also needed to have a reliably
measurable quantum spin—

meaning the orientation of the axis
about which the electron rotates—

as well as a simple energy
level structure—

meaning the active electrons are few
and their state is simple to identify.

Finally, it needed to be easy to vaporize.

The winning atom? Cesium-133.

Cesium was already a popular
element for atomic clock research,

and by 1968, some cesium clocks
were even commercially available.

All that was left was to determine
how many ticks of a cesium atom

were in a second.

The conference used the most
precise astronomical measurement

of a second available at the time—

beginning with the number of days
in a year and dividing down.

When compared to the atom’s ticking rate,

the results formally defined one second

as exactly 9,192,631,770 ticks
of a cesium-133 atom.

Today, atomic clocks are used all over
the Earth— and beyond it.

From radio signal transmitters
to satellites

for global positioning systems,

these devices have been synchronized

to help us maintain a globally
consistent time—

with precision that’s second to none.

1967 年,来自世界各地的研究人员

齐聚一堂,回答
了一个长期存在的科学问题——

一秒钟有多长?

一开始可能看起来很明显。

一秒是时钟的滴答声

,钟摆的摆动,
从数到一所需的时间。

但是这些测量结果有多精确?

这个长度是基于什么的?

我们如何才能科学地定义
这个基本的时间单位?

在人类历史的大部分时间里,
古代文明

使用独特的日历来测量时间,这些日历

跟踪夜空的稳定
行进。

事实上,我们所知道的第二个
直到 1500 年代后期才引入,

当时公历
开始

与英国殖民主义一起在全球传播。

公历将一天
定义为地球

绕其轴心转一圈。

每天可以分为 24 小时,
每小时可以分为 60 分钟

,每分钟可以分为 60 秒。

然而,当它第一次被定义时

,第二个更多的是一个数学
概念,而不是一个有用的时间单位。 对于牧区的大多数任务来说,

测量天数和小时数就足够
了。

直到社会

通过快速移动的铁路相互联系起来,城市才
需要就准确的计时达成一致。

到 1950 年代,许多全球系统都
需要

以尽可能高的精度完美地计算每一秒。

还有什么
比原子尺度更精确呢?

早在 1955 年,研究人员就
开始研制原子钟,

它依靠不变
的物理定律

为计时奠定了新的基础

原子由带负电的电子组成,这些
电子以一致的频率

围绕带正电的原子核运行

量子力学定律
使这些电子保持在原位,

但如果你将原子暴露

在光或无线电波等电磁场中,

你可能会稍微扰乱电子的
方向。

如果你
以正确的频率短暂调整电子,

你可以
产生类似于滴答钟摆的振动。

与快速失去能量的常规钟摆不同
,电子可以持续几个世纪。

为了保持一致性并使蜱
更易于测量,

研究人员将原子蒸发,

将它们转换为互动性
和挥发性较低的状态。

但是这个过程并没有
减慢原子非常快的滴答声。

一些原子每秒可以振荡
超过 90 亿次,

从而为原子钟提供了无与伦比的
时间测量分辨率。

而且由于给定
元素同位素的每个原子都是相同的,因此

使用相同元素
和相同电磁波的两名研究人员

应该会产生完全
一致的时钟。

但在计时
可以完全原子化之前,

各国必须决定哪个原子能
最好地工作。

这是 1967 年国际度量衡委员会

第十三届大会
上的讨论

元素周期表上有 118 种元素

每种元素都有自己独特的属性。

对于这项任务,研究人员
正在寻找几样东西。

该元件需要具有长寿命

和高频电子振荡,
以实现精确、长期的计时。

为了轻松跟踪这种振荡,

它还需要有一个可靠
可测量的量子自旋——

这意味着电子旋转的轴的方向——

以及一个简单的
能级结构——

这意味着活跃的电子很少
并且它们的状态很容易 确认。

最后,它需要易于蒸发。

获胜的原子? 铯133。

铯已经
是原子钟研究的一种流行元素

,到 1968 年,一些铯
钟甚至可以在市场上买到。

剩下的就是确定
一个铯原子在一秒钟内有多少滴答声

会议使用了当时可用的最
精确

的一秒天文测量——

从一年中的天数开始,
然后除以。

与原子的滴答速率相比

,结果正式将一秒定义

为铯 133 原子的 9,192,631,770 个滴答声。

今天,原子钟被用于
地球各处——甚至更远的地方。

从无线电信号发射器

用于全球定位系统的卫星,

这些设备已经同步,

以帮助我们保持全球
一致的时间——

其精度是首屈一指的。