How to 3D print human tissue Taneka Jones

There are currently hundreds of thousands
of people on transplant lists,

waiting for critical organs like kidneys,
hearts, and livers

that could save their lives.

Unfortunately,

there aren’t nearly enough donor organs
available to fill that demand.

What if instead of waiting,

we could create brand-new, customized
organs from scratch?

That’s the idea behind bioprinting,

a branch of regenerative medicine
currently under development.

We’re not able to print complex
organs just yet,

but simpler tissues including blood
vessels and tubes

responsible for nutrient
and waste exchange

are already in our grasp.

Bioprinting is a biological
cousin of 3-D printing,

a technique that deposits layers of
material on top of each other

to construct a three-dimensional object
one slice at a time.

Instead of starting with metal, plastic,
or ceramic,

a 3-D printer for organs and
tissues uses bioink:

a printable material that
contains living cells.

The bulk of many bioinks are water-rich
molecules called hydrogels.

Mixed into those are
millions of living cells

as well as various chemicals that
encourage cells to communicate and grow.

Some bioinks include a
single type of cell,

while others combine several different
kinds to produce more complex structures.

Let’s say you want to print a meniscus,

which is a piece of cartilage in the knee

that keeps the shinbone and thighbone
from grinding against each other.

It’s made up of cells called chondrocytes,

and you’ll need a healthy supply of
them for your bioink.

These cells can come from donors whose
cell lines are replicated in a lab.

Or they might originate from a
patient’s own tissue

to create a personalized meniscus less
likely to be rejected by their body.

There are several printing techniques,

and the most popular is extrusion-based
bioprinting.

In this, bioink gets loaded into a
printing chamber

and pushed through a round nozzle
attached to a printhead.

It emerges from a nozzle that’s rarely
wider than 400 microns in diameter,

and can produce a continuous filament

roughly the thickness
of a human fingernail.

A computerized image or file guides the
placement of the strands,

either onto a flat surface or into a
liquid bath

that’ll help hold the structure in place
until it stabilizes.

These printers are fast, producing the
meniscus in about half an hour,

one thin strand at a time.

After printing, some bioinks
will stiffen immediately;

others need UV light or an additional
chemical or physical process

to stabilize the structure.

If the printing process is successful,

the cells in the synthetic tissue

will begin to behave the same way
cells do in real tissue:

signaling to each other, exchanging
nutrients, and multiplying.

We can already print relatively simple
structures like this meniscus.

Bioprinted bladders have also been
successfully implanted,

and printed tissue has promoted facial
nerve regeneration in rats.

Researchers have created lung tissue,
skin, and cartilage,

as well as miniature, semi-functional
versions of kidneys, livers, and hearts.

However, replicating the complex
biochemical environment

of a major organ
is a steep challenge.

Extrusion-based bioprinting may destroy

a significant percentage of cells in the
ink if the nozzle is too small,

or if the printing pressure is too high.

One of the most formidable challenges

is how to supply oxygen and nutrients
to all the cells in a full-size organ.

That’s why the greatest successes so far

have been with structures
that are flat or hollow—

and why researchers are busy
developing ways

to incorporate blood vessels
into bioprinted tissue.

There’s tremendous potential to use
bioprinting

to save lives and advance our
understanding

of how our organs function
in the first place.

And the technology opens up a dizzying
array of possibilities,

such as printing tissues with
embedded electronics.

Could we one day engineer organs that
exceed current human capability,

or give ourselves features like
unburnable skin?

How long might we extend human life
by printing and replacing our organs?

And exactly who—and what—

will have access to this technology
and its incredible output?

目前有数十
万人在移植名单上,

等待肾脏、心脏和肝脏等关键器官

来挽救他们的生命。

不幸的是,

几乎没有足够的供体
器官来满足这一需求。

如果

我们可以从头开始创建全新的定制
器官,而不是等待,该怎么办?

这就是生物打印背后的想法,生物打印

是目前正在开发的再生医学的一个分支

我们目前还不能打印复杂的
器官,

但更简单的组织,包括

负责营养
和废物交换

的血管和管道,已经在我们的掌握之中。

生物打印是
3-D 打印的生物学表亲,3-D 打印

是一种将材料层沉积
在彼此之上以一次

构建一个 3D 对象
的技术。 用于器官和组织的 3D 打印机

不是从金属、塑料或陶瓷开始,而是

使用生物墨水:

一种包含活细胞的可打印材料

许多生物墨水的大部分是富含水的
分子,称为水凝胶。

混入其中的是
数以百万计的活细胞

以及
促进细胞交流和生长的各种化学物质。

一些生物墨水包括
单一类型的细胞,

而另一些则结合了几种不同
类型以产生更复杂的结构。

假设您要打印半月板,

它是膝盖中的一块软骨

,可防止胫骨和大腿骨
相互摩擦。

它由称为软骨细胞的细胞组成

,您需要
为您的生物墨水提供健康的供应。

这些细胞可以来自其
细胞系在实验室中复制的供体。

或者它们可能源自
患者自己的组织,

以创建个性化的半月板,不太
可能被他们的身体排斥。

有几种打印技术

,最流行的是基于挤出的
生物打印。

在这种情况下,生物墨水被装入
打印室

并通过连接到打印头的圆形喷嘴被推动

它从一个
直径很少超过 400 微米的喷嘴喷出

,可以产生

大约与
人类指甲一样厚的连续细丝。

计算机化的图像或文件指导
线束的放置,

无论是在平坦的表面上还是在
液浴中

,这将有助于将结构保持在适当的位置,
直到它稳定下来。

这些打印机速度很快,
大约半小时就可以打印出弯月面,

一次一根细线。

打印后,一些生物墨水
会立即变硬;

其他人需要紫外线或额外的
化学或物理过程

来稳定结构。

如果打印过程成功,

合成组织中的细胞

将开始表现出与
真实组织中细胞相同的行为:

相互发出信号、交换
营养并繁殖。

我们已经可以打印出相对简单的
结构,比如这个弯月面。

生物打印的膀胱也已
成功植入

,打印的组织促进
了大鼠的面神经再生。

研究人员已经创造了肺组织、
皮肤和软骨,

以及
肾脏、肝脏和心脏的微型、半功能版本。

然而,复制主要器官的复杂
生化环境

是一项艰巨的挑战。 如果喷嘴太小或打印压力太高,

基于挤出的生物打印可能会破坏墨水中

相当大比例的细胞

最艰巨的挑战之一

是如何为
全尺寸器官中的所有细胞提供氧气和营养。

这就是为什么迄今为止最大的成功

是扁平或空心结构——

以及为什么研究人员忙于
开发

将血管
整合到生物打印组织中的方法。

使用
生物打印技术

来拯救生命和增进我们

器官功能的理解具有巨大的潜力

该技术开辟了一系列令人
眼花缭乱的可能性,

例如使用
嵌入式电子设备打印纸巾。

有朝一日,我们能否设计出
超越当前人类能力的器官,

或者赋予自己诸如
不可燃烧皮肤之类的特征?

通过打印和更换我们的器官,我们可以延长人类寿命多久?

究竟谁——以及什么——

将获得这项技术
及其令人难以置信的产出?