How well become cyborgs and extend human potential Hugh Herr

I’m an MIT professor,

but I do not design buildings
or computer systems.

Rather, I build body parts,

bionic legs that augment
human walking and running.

In 1982, I was in
a mountain-climbing accident,

and both of my legs had to be amputated
due to tissue damage from frostbite.

Here, you can see my legs:

24 sensors, six microprocessors
and muscle-tendon-like actuators.

I’m basically a bunch of nuts and bolts
from the knee down.

But with this advanced bionic technology,

I can skip, dance and run.

(Applause)

Thank you.

(Applause)

I’m a bionic man,
but I’m not yet a cyborg.

When I think about moving my legs,

neural signals from
my central nervous system

pass through my nerves

and activate muscles
within my residual limbs.

Artificial electrodes sense these signals,

and small computers in the bionic limb

decode my nerve pulses
into my intended movement patterns.

Stated simply,

when I think about moving,

that command is communicated
to the synthetic part of my body.

However, those computers can’t input
information into my nervous system.

When I touch and move my synthetic limbs,

I do not experience normal
touch and movement sensations.

If I were a cyborg and could feel my legs

via small computers inputting information
into my nervous system,

it would fundamentally change, I believe,

my relationship to my synthetic body.

Today, I can’t feel my legs,

and because of that,

my legs are separate tools
from my mind and my body.

They’re not part of me.

I believe that if I were a cyborg
and could feel my legs,

they would become
part of me, part of self.

At MIT, we’re thinking about
NeuroEmbodied Design.

In this design process,

the designer designs human flesh and bone,
the biological body itself,

along with synthetics to enhance
the bidirectional communication

between the nervous system
and the built world.

NeuroEmbodied Design is a methodology
to create cyborg function.

In this design process,
designers contemplate a future

in which technology
no longer compromises separate,

lifeless tools from
our minds and our bodies,

a future in which technology
has been carefully integrated

within our nature,

a world in which
what is biological and what is not,

what is human and what is not,

what is nature and what is not

will be forever blurred.

That future will provide
humanity new bodies.

NeuroEmbodied Design
will extend our nervous systems

into the synthetic world,

and the synthetic world into us,

fundamentally changing who we are.

By designing the biological body
to better communicate

with the built design world,

humanity will end disability
in this 21st century

and establish the scientific
and technological basis

for human augmentation,

extending human capability
beyond innate, physiological levels,

cognitively, emotionally and physically.

There are many ways
in which to build new bodies across scale,

from the biomolecular
to the scale of tissues and organs.

Today, I want to talk about
one area of NeuroEmbodied Design,

in which the body’s tissues
are manipulated and sculpted

using surgical and regenerative processes.

The current amputation paradigm

hasn’t changed fundamentally
since the US Civil War

and has grown obsolete
in light of dramatic advancements

in actuators, control systems
and neural interfacing technologies.

A major deficiency is the lack
of dynamic muscle interactions

for control and proprioception.

What is proprioception?

When you flex your ankle,
muscles in the front of your leg contract,

simultaneously stretching muscles
in the back of your leg.

The opposite happens
when you extend your ankle.

Here, muscles in the back
of your leg contract,

stretching muscles in the front.

When these muscles flex and extend,

biological sensors
within the muscle tendons

send information
through nerves to the brain.

This is how we’re able to feel
where our feet are

without seeing them with our eyes.

The current amputation paradigm
breaks these dynamic muscle relationships,

and in so doing eliminates
normal proprioceptive sensations.

Consequently, a standard artificial limb

cannot feed back information
into the nervous system

about where the prosthesis is in space.

The patient therefore
cannot sense and feel

the positions and movements
of the prosthetic joint

without seeing it with their eyes.

My legs were amputated
using this Civil War-era methodology.

I can feel my feet,
I can feel them right now

as a phantom awareness.

But when I try to move them, I cannot.

It feels like they’re stuck
inside rigid ski boots.

To solve these problems,

at MIT, we invented the agonist-antagonist
myoneural interface,

or AMI, for short.

The AMI is a method to connect nerves
within the residuum

to an external, bionic prosthesis.

How is the AMI designed,
and how does it work?

The AMI comprises two muscles
that are surgically connected,

an agonist linked to an antagonist.

When the agonist contracts
upon electrical activation,

it stretches the antagonist.

This muscle dynamic interaction

causes biological sensors
within the muscle tendon

to send information through the nerve
to the central nervous system,

relating information on the muscle
tendon’s length, speed and force.

This is how muscle tendon
proprioception works,

and it’s the primary way we, as humans,

can feel and sense the positions,
movements and forces on our limbs.

When a limb is amputated,

the surgeon connects these opposing
muscles within the residuum

to create an AMI.

Now, multiple AMI
constructs can be created

for the control and sensation
of multiple prosthetic joints.

Artificial electrodes are then placed
on each AMI muscle,

and small computers within the bionic limb
decode those signals

to control powerful motors
on the bionic limb.

When the bionic limb moves,

the AMI muscles move back and forth,

sending signals through
the nerve to the brain,

enabling a person wearing the prosthesis
to experience natural sensations

of positions and movements
of the prosthesis.

Can these tissue-design principles
be used in an actual human being?

A few years ago, my good friend
Jim Ewing – of 34 years –

reached out to me for help.

Jim was in an a terrible
climbing accident.

He fell 50 feet in the Cayman Islands

when his rope failed to catch him
hitting the ground’s surface.

He suffered many, many injuries:

punctured lungs and many broken bones.

After his accident, he dreamed
of returning to his chosen sport

of mountain climbing,

but how might this be possible?

The answer was Team Cyborg,

a team of surgeons,
scientists and engineers

assembled at MIT to rebuild Jim
back to his former climbing prowess.

Team member Dr. Matthew Carty
amputated Jim’s badly damaged leg

at Brigham and Women’s Hospital in Boston,

using the AMI surgical procedure.

Tendon pulleys were created
and attached to Jim’s tibia bone

to reconnect the opposing muscles.

The AMI procedure
reestablished the neural link

between Jim’s ankle-foot
muscles and his brain.

When Jim moves his phantom limb,

the reconnected muscles
move in dynamic pairs,

causing signals of proprioception
to pass through nerves to the brain,

so Jim experiences normal sensations
with ankle-foot positions and movements,

even when blindfolded.

Here’s Jim at the MIT laboratory
after his surgeries.

We electrically linked Jim’s AMI muscles,
via the electrodes,

to a bionic limb,

and Jim quickly learned
how to move the bionic limb

in four distinct ankle-foot
movement directions.

We were excited by these results,
but then Jim stood up,

and what occurred was truly remarkable.

All the natural biomechanics
mediated by the central nervous system

emerged via the synthetic limb

as an involuntary, reflexive action.

All the intricacies of foot placement
during stair ascent –

(Applause)

emerged before our eyes.

Here’s Jim descending steps,

reaching with his bionic toe
to the next stair tread,

automatically exhibiting natural motions

without him even trying to move his limb.

Because Jim’s central nervous system
is receiving the proprioceptive signals,

it knows exactly how to control
the synthetic limb in a natural way.

Now, Jim moves and behaves
as if the synthetic limb is part of him.

For example, one day in the lab,

he accidentally stepped
on a roll of electrical tape.

Now, what do you do
when something’s stuck to your shoe?

You don’t reach down like this;
it’s way too awkward.

Instead, you shake it off,

and that’s exactly what Jim did

after being neurally connected to the limb
for just a few hours.

What was most interesting to me

is what Jim was telling us
he was experiencing.

He said, “The robot became part of me.”

Jim Ewing: The morning after the first
time I was attached to the robot,

my daughter came downstairs
and asked me how it felt to be a cyborg,

and my answer was
that I didn’t feel like a cyborg.

I felt like I had my leg,

and it wasn’t that I was
attached to the robot

so much as the robot was attached to me,

and the robot became part of me.

It became my leg pretty quickly.

Hugh Herr: Thank you.

(Applause)

By connecting Jim’s
nervous system bidirectionally

to his synthetic limb,

neurological embodiment was achieved.

I hypothesized that because Jim
can think and move his synthetic limb,

and because he can feel those movements
within his nervous system,

the prosthesis is no longer
a separate tool,

but an integral part of Jim,
an integral part of his body.

Because of this neurological embodiment,
Jim doesn’t feel like a cyborg.

He feels like he just has his leg back,

that he has his body back.

Now I’m often asked

when I’m going to be neurally linked
to my synthetic limbs bidirectionally,

when I’m going to become a cyborg.

The truth is, I’m hesitant
to become a cyborg.

Before my legs were amputated,
I was a terrible student.

I got D’s and often F’s in school.

Then, after my limbs were amputated,

I suddenly became an MIT professor.

(Laughter)

(Applause)

Now I’m worried that once I’m neurally
connected to my limbs once again,

my brain will remap
back to its not-so-bright self.

(Laughter)

But you know what, that’s OK,
because at MIT, I already have tenure.

(Laughter)

(Applause)

I believe the reach
of NeuroEmbodied Design

will extend far beyond limb replacement

and will carry humanity into realms

that fundamentally
redefine human potential.

In this 21st century,

designers will extend the nervous system
into powerfully strong exoskeletons

that humans can control
and feel with their minds.

Muscles within the body
can be reconfigured

for the control of powerful motors,

and to feel and sense
exoskeletal movements,

augmenting humans' strength,
jumping height and running speed.

In this 21st century, I believe humans
will become superheroes.

Humans may also extend their bodies

into non-anthropomorphic
structures, such as wings,

controlling and feeling each wing movement
within the nervous system.

Leonardo da Vinci said,
“When once you have tasted flight,

you will forever walk the earth
with your eyes turned skyward,

for there you have been
and there you will always long to return.”

During the twilight years of this century,

I believe humans will be unrecognizable
in morphology and dynamics

from what we are today.

Humanity will take flight and soar.

Jim Ewing fell to earth
and was badly broken,

but his eyes turned skyward,
where he always longed to return.

After his accident,
he not only dreamed to walk again,

but also to return to his chosen sport
of mountain climbing.

At MIT, Team Cyborg built Jim
a specialized limb for the vertical world,

a brain-controlled leg with full position
and movement sensations.

Using this technology,
Jim returned to the Cayman Islands,

the site of his accident,

rebuilt as a cyborg
to climb skyward once again.

(Crashing waves)

(Applause)

Thank you.

(Applause)

Ladies and gentlemen, Jim Ewing,
the first cyborg rock climber.

(Applause)

我是麻省理工学院的教授,

但我不设计建筑物
或计算机系统。

相反,我构建了身体部位,

仿生腿,增强了
人类的步行和跑步能力。

1982年,我在
一次登山事故中,

因冻伤组织损伤,双腿不得不截肢。

在这里,你可以看到我的腿:

24 个传感器、6 个微处理器
和类似肌肉腱的执行器。

我基本上是从膝盖以下的一堆螺母和螺栓

但有了这种先进的仿生技术,

我可以跳跃、跳舞和奔跑。

(掌声)

谢谢。

(掌声)

我是仿生人,
但我还不是机器人。

当我想移动我的腿时,

来自
我的中枢神经系统的神经信号会

通过我的神经

并激活
我残肢内的肌肉。

人造电极感知这些信号,

仿生肢体中的小型计算机

将我的神经脉冲解码
为我想要的运动模式。

简单地说,

当我想到移动时,

该命令会传达
给我身体的合成部分。

但是,那些计算机无法将
信息输入我的神经系统。

当我触摸和移动我的合成肢体时,

我没有体验到正常的
触觉和运动感觉。

如果我是一个半机械人,并且可以

通过小型计算机将信息
输入我的神经系统来感觉到我的腿

,我相信这将从根本上改变

我与合成身体的关系。

今天,我感觉不到我的腿

,因此,

我的腿是独立
于我的思想和身体的工具。

他们不是我的一部分。

我相信,如果我是一个机器人
并且能感觉到我的腿,

它们就会
成为我的一部分,成为自我的一部分。

在 MIT,我们正在考虑
NeuroEmbodied 设计。

在这个设计过程中

,设计师设计了人的肉和骨头
,生物体本身,

以及合成物,以增强

神经系统
和建筑世界之间的双向交流。

NeuroEmbodied Design 是一种
创建 cyborg 功能的方法。

在这个设计过程中,
设计师们思考了一个未来,

在这个未来中,技术
不再损害我们思想和身体的分离、

无生命的工具

一个技术
已经被仔细整合

到我们的自然中

的未来,一个
什么是生物的,什么不是的世界 ,

什么是人,什么不是,

什么是自然,什么不是,

将永远模糊。

那个未来将为
人类提供新的身体。

NeuroEmbodied Design
将把我们的神经系统扩展

到合成世界

,将合成世界扩展到我们自己,

从根本上改变我们的身份。

通过设计生物体
以更好地

与建筑设计世界交流,

人类将
在这个 21 世纪结束残疾,

并为人类增强建立
科学技术基础

将人类能力
扩展到先天、生理水平、

认知、情感和身体之外。

从生物分子
到组织和器官的规模,有很多方法可以跨尺度构建新的身体。

今天,我想谈谈
NeuroEmbodied 设计的一个领域

,其中身体的组织

通过手术和再生过程来操纵和雕刻的。

自美国内战以来,当前的截肢范式

并没有发生根本性

的变化,并且随着

执行器、控制系统
和神经接口技术的巨大进步而变得过时。

一个主要缺陷是缺乏

控制和本体感觉的动态肌肉相互作用。

什么是本体感觉?

当你弯曲脚踝时,
腿前部的肌肉收缩,

同时拉伸
腿后部的肌肉。

当你伸展脚踝时会发生相反的情况

在这里,
你腿后部的肌肉收缩,

伸展前部的肌肉。

当这些肌肉弯曲和伸展时,

肌腱内的生物传感器

通过神经向大脑发送信息。

这就是我们能够
在不亲眼看到脚的情况下感觉到脚在哪里的方式

当前的截肢范式
打破了这些动态的肌肉关系

,从而消除了
正常的本体感觉。

因此,标准的假肢

无法

将假肢在太空中的位置信息反馈到神经系统中。

因此,
如果不亲眼看到,患者就无法感知和感受假体关节

的位置和运动

我的腿被
这种内战时代的方法截肢了。

我能感觉到我的脚,
我现在能感觉到它们

是一种幻觉。

但是当我试图移动它们时,我不能。

感觉就像他们被困
在坚硬的滑雪靴里。

为了解决这些问题,

在麻省理工学院,我们发明了激动剂-拮抗剂
肌神经接口

,简称 AMI。

AMI 是一种将
残留物中的神经连接

到外部仿生假体的方法。

AMI 是如何设计的
,它是如何工作的?

AMI 包括
通过手术连接的两块肌肉,

一个激动剂与一个拮抗剂相连。

当激动剂
因电激活而收缩时,

它会拉伸拮抗剂。

这种肌肉动态相互作用

导致
肌腱内的生物传感器

通过神经
向中枢神经系统发送信息,将

有关
肌腱长度、速度和力量的信息联系起来。

这就是肌腱
本体感觉的工作原理

,也是我们

人类感知和感知四肢位置、
运动和力量的主要方式。

当肢体被截肢时

,外科医生将残肢内的这些对立肌肉连接起来

,形成 AMI。

现在,
可以

为多个假肢关节的控制和感觉创建多个 AMI 结构。

然后将人工电极放置
在每条 AMI 肌肉上

,仿生肢体内的小型计算机
对这些信号进行解码,

以控制
仿生肢体上的强大电机。

当仿生肢体移动时

,AMI 肌肉来回移动,

通过神经向大脑发送信号,

使佩戴假肢的人能够体验到假肢

位置和运动
的自然感觉。

这些组织设计原则
可以用于真实的人类吗?

几年前,我
34 岁的好朋友 Jim

Ewing 向我寻求帮助。

吉姆遭遇了一次可怕的
攀登事故。

当他的绳索未能抓住他撞到地面时,他在开曼群岛跌落了 50 英尺

他受了很多很多伤:

肺被刺破,许多骨头骨折。

出事后,他
梦想回到自己选择

的登山运动,

但这怎么可能呢?

答案是 Team Cyborg,

一个由外科医生、
科学家和工程师

组成的团队聚集在麻省理工学院,旨在让 Jim
恢复他从前的攀岩能力。

团队成员 Matthew Carty 博士

在波士顿布莱根妇女医院

使用 AMI 外科手术切除了吉姆严重受损的腿。

制造了肌腱滑轮
并将其连接到吉姆的胫骨上,

以重新连接相对的肌肉。

AMI 手术
重建了

吉姆的踝足
肌肉和大脑之间的神经联系。

当吉姆移动他的幻肢时

,重新连接的肌肉
会成对地动态移动,

从而导致本体感觉信号
通过神经传递到大脑,

因此吉姆

即使在被蒙住眼睛的情况下也能体验到脚踝脚位置和运动的正常感觉。

这是手术后在麻省理工学院实验室的吉姆

我们通过电极将 Jim 的 AMI 肌肉

与仿生肢体电连接

,Jim 很快学会了
如何

在四个不同的踝足
运动方向上移动仿生肢体。

我们对这些结果感到兴奋,
但随后吉姆站了起来

,发生的事情真的很了不起。

由中枢神经系统介导的所有自然生物力学都是

通过合成肢体

作为一种非自愿的、反射性的动作而出现的。

上楼梯时所有错综复杂的脚部放置
——

(掌声)

出现在我们眼前。

这是吉姆下楼梯

,他的仿生脚趾
伸到下一个楼梯踏板,

自动表现出自然的动作

,他甚至没有试图移动他的肢体。

因为吉姆的中枢神经系统
正在接收本体感受信号,

所以它确切地知道如何
以自然的方式控制合成肢体。

现在,Jim 的动作和行为
就好像合成肢体是他的一部分。

例如,有一天在实验室里,

他不小心
踩到了一卷电工胶带。

现在,
当有东西粘在你的鞋子上时,你会怎么做?

你不会像这样伸手去拿;
这太尴尬了。

相反,你摆脱它

,这正是吉姆

在与肢体神经连接几个小时后所做的

我最感兴趣的

是吉姆告诉我们
他正在经历的事情。

他说,“机器人成了我的一部分。”

Jim Ewing:我第一次接触机器人后的第二天早上

我女儿
下楼问我做一个半机械人的感觉

,我的回答
是我不觉得自己是一个半机械人。

我觉得我有一条腿

,并不是我
依附于

机器人,而是机器人依附于我,

而机器人成为了我的一部分。

它很快就变成了我的腿。

休赫尔:谢谢。

(掌声)

通过将吉姆的
神经系统双向连接

到他的合成肢体,

实现了神经学的体现。

我假设因为吉姆
可以思考和移动他的合成肢体,

并且因为他可以
在他的神经系统中感觉到这些运动,

所以假肢不再
是一个单独的工具,

而是吉姆
不可分割的一部分,是他身体不可分割的一部分。

由于这种神经系统的体现,
Jim 感觉不像是一个电子人。

他觉得他的腿回来了

,他的身体也回来了。

现在我经常被问到

什么时候我会在神经上
与我的合成肢体双向连接,

什么时候我会成为一个机器人。

事实是,我
对成为半机械人犹豫不决。

在我的腿被截肢之前,
我是一个糟糕的学生。

我在学校得了 D,而且经常得 F。

然后,在我的四肢被截肢后,

我突然成为了麻省理工学院的教授。

(笑声)

(掌声)

现在我担心一旦我
再次与四肢建立神经连接,

我的大脑会重新映射
回不那么明亮的自我。

(笑声)

但是你知道吗,没关系,
因为在麻省理工学院,我已经有终身教职了。

(笑声)

(掌声)

我相信
NeuroEmbodied Design 的

影响范围将远远超出肢体置换

,并将人类带入

从根本上
重新定义人类潜力的领域。

在这个 21 世纪,

设计师将神经系统扩展
成强大的外骨骼

,人类可以
用他们的思想来控制和感受。

身体内的肌肉
可以重新配置

,以控制强大的马达

,感受和感知
外骨骼运动,

增强人类的力量、
跳跃高度和跑步速度。

在这个21世纪,我相信人类
会成为超级英雄。

人类还可以将他们的身体延伸

到非拟人化的
结构中,例如翅膀,

控制和感受
神经系统内的每个翅膀运动。

列奥纳多·达·芬奇曾说过:
“一旦你尝到了飞行的滋味,

你将永远在地球上行走,
眼睛望向天空

,因为你曾经在
那里,你将永远渴望返回。”

在本世纪的暮年,

我相信人类
在形态和动力学上将

与我们今天的样子完全不同。

人类将起飞和翱翔。

吉姆·尤因摔倒在地
,伤势严重,

但他的眼睛转向天空,
他一直渴望回到那里。

事故发生后,
他不仅梦想重新走路,

还梦想回到他选择
的登山运动。

在麻省理工学院,Cyborg 团队为 Jim 制造
了一个专门用于垂直世界的肢体,这

是一条由大脑控制的腿,具有完整的位置
和运动感觉。

使用这项技术,
吉姆回到

了他的事故发生地开曼群岛,被

重建为一个机器人
,再次攀登天空。

(冲击波)

(掌声)

谢谢。

(掌声)

女士们,先生们,吉姆·尤因,
第一位机器人攀岩者。

(掌声)