Is human evolution speeding up or slowing down Laurence Hurst

The Tibetan high plateau lies
about 4500 meters above sea level,

with only 60% of the oxygen found below.

While visitors and recent settlers
struggle with altitude sickness,

native Tibetans sprint up mountains.

This ability comes not from training
or practice,

but from changes to a few genes
that allow their bodies

to make the most of limited oxygen.

These differences are apparent from birth—

Tibetan babies have, on average,
higher birth weights,

higher oxygen saturation,

and are much likelier to survive than
other babies born in this environment.

These genetic changes are estimated
to have evolved

over the last 3,000 years or so,
and are ongoing.

That may sound like a long time,

but would be the fastest an adaptation
has ever evolved in a human population.

It’s clear that human evolution
isn’t over—

so what are other recent changes?

And will our technological and scientific
innovations impact our evolution?

In the past few thousand years,

many populations have evolved genetic
adaptations to their local environments.

People in Siberia and the high arctic are
uniquely adapted to survive extreme cold.

They’re slower to develop frostbite,

and can continue to use their hands
in subzero temperatures

much longer than most people.

They’ve undergone selection
for a higher metabolic rate

that increases heat production.

Further south, the Bajau people
of southeast Asia can dive 70 meters

and stay underwater
for almost fifteen minutes.

Over thousands of years living
as nomadic hunters at sea,

they have genetically-hardwired unusually
large spleens that act as oxygen stores,

enabling them to stay underwater
for longer—

an adaptation similar
to that of deep diving seals.

Though it may seem pedestrian
by comparison,

the ability to drink milk
is another such adaptation.

All mammals can drink
their mother’s milk as babies.

After weaning they switch off the gene
that allows them to digest milk.

But communities in sub-Saharan Africa,
the middle east and northwest Europe

that used cows for milk have seen
a rapid increase in DNA variants

that prevent the gene from switching off
over the last 7 to 8000 years.

At least in Europe, milk drinking may
have given people a source of calcium

to aid in vitamin D production,
as they moved north and sunlight,

the usual source of vitamin D,
decreased.

Though not always in obvious ways,

all of these changes improve people’s
chance of surviving to reproductive age—

that’s what drives natural selection,

the force behind all these
evolutionary changes.

Modern medicine removes
many of these selective pressures

by keeping us alive when our genes,

sometimes combined
with infectious diseases,

would have killed us.

Antibiotics, vaccines, clean water
and good sanitation

all make differences between our genes
less important.

Similarly, our ability to cure
childhood cancers,

surgically extract inflamed appendixes,
and deliver babies

whose mothers have life-threatening
pregnancy-specific conditions,

all tend to stop selection by allowing
more people to survive

to a reproductive age.

But even if every person on Earth
has access to modern medicine,

it won’t spell the end of human evolution.

That’s because there are other aspects
of evolution besides natural selection.

Modern medicine makes genetic variation

that would have been subject
to natural selection

subject to what’s called
genetic drift instead.

With genetic drift, genetic differences
vary randomly within a population.

On a genetic level, modern medicine
might actually increase variety,

because harmful mutations don’t kill
people and thus aren’t eliminated.

This variation doesn’t necessarily
translate to observable, or phenotypic,

differences among people, however.

Researchers have also been investigating
whether genetic adaptations

to a specific environment
could appear very quickly

through epigenetic modification:
changes not to genes themselves,

but to whether and when certain genes
are expressed.

These changes can happen
during a lifetime,

and may even be passed to offspring—

but so far researchers are conflicted
over whether epigenetic modifications

can really persist over many generations

and lead to lasting changes
in populations.

There may also be other contributors
to human evolution.

Modern medicine and technology
are very new,

even compared to the quickest,
most recent changes by natural selection—

so only time can tell how our present
will shape our future.

青藏高原
海拔约4500米,地下

只有60%的氧气。

当游客和最近的定居者
与高原反应作斗争时,

土生土长的藏人冲刺上山。

这种能力不是来自训练
或练习,

而是来自一些基因的改变,这些
基因允许他们的

身体充分利用有限的氧气。

这些差异从出生就很明显——

西藏婴儿的平均
出生体重、

氧饱和度更高,

并且比
在这种环境中出生的其他婴儿更有可能存活。

据估计,这些遗传变化是

在过去 3000 年左右的时间里进化而来的,
并且还在继续。

这听起来可能很长一段时间,

但将
是人类进化史上最快的适应。

很明显,人类的进化
还没有结束——

那么最近的其他变化是什么?

我们的技术和科学
创新会影响我们的进化吗?

在过去的几千年里,

许多种群已经进化出
适应当地环境的基因。

西伯利亚和北极高地的人们
独特地适应了极端寒冷。

他们患冻伤的速度较慢,

并且可以比大多数人
在零度以下的温度下继续使用双手的

时间要长得多。

他们已经
选择了更高的代谢率

,从而增加了热量的产生。

再往南,东南亚的巴瑶
人可以潜入 70 米

,在水下
停留近 15 分钟。

几千年来,
作为游牧猎人生活在海上,

它们的基因硬连线异常
大的脾脏充当氧气储存器,

使它们能够在水下停留更长时间——

这种
适应类似于深潜海豹的适应。

虽然相比之下看起来很普通

但喝牛奶的能力
是另一种这样的适应。

所有哺乳动物
在婴儿时期都可以喝母乳。

断奶后,它们会关闭
让它们消化牛奶的基因。

但在过去 7 到 8000 年中,撒哈拉以南非洲
、中东和

西北欧以奶牛为原料的社区发现
DNA 变异体迅速增加,这些变异

体阻止了该基因的关闭

至少在欧洲,喝牛奶可能为
人们提供了钙的来源,

以帮助生产维生素 D,
因为他们向北移动

,而通常维生素 D 的来源阳光也
减少了。

尽管并非总是以明显的方式,

所有这些变化都提高了人们
生存到生育年龄的机会——

这就是推动自然选择的原因,

也是所有这些进化变化背后的力量

当我们的基因

有时与传染病相结合

会杀死我们时,现代医学通过让我们活着来消除许多这些选择压力。

抗生素、疫苗、干净的水
和良好的卫生条件

都使我们基因之间的差异变得
不那么重要。

同样,我们治愈
儿童癌症、通过

手术切除发炎的阑尾
以及分娩

母亲患有危及生命的
妊娠特异性疾病的婴儿的能力,

都倾向于通过让
更多的人存活

到育龄来停止选择。

但即使地球上的每个人
都能获得现代医学,

也不会意味着人类进化的终结。

那是因为
除了自然选择之外,进化还有其他方面。

现代医学使原本

受自然选择

影响的遗传变异受制于所谓的
遗传漂变。

随着遗传漂变,遗传
差异在人群中随机变化。

在基因层面上,现代医学
实际上可能会增加多样性,

因为有害突变不会杀死
人,因此不会被消除。

然而,这种变化并不一定会
转化为人与人之间可观察到的或表型的

差异。

研究人员还一直在研究

对特定环境的遗传适应是否
可以

通过表观遗传修饰很快出现:
不是基因本身的变化,

而是某些基因是否以及何时
表达的变化。

这些变化可能
在一生中发生,

甚至可能传给后代——

但到目前为止,研究人员
对表观遗传修饰是否

真的能持续多代

并导致种群的持久变化存在争议
。 人类进化

可能还有其他
贡献者。

现代医学和技术
是非常新的,

即使与自然选择的最快、最新变化相比也是

如此——所以只有时间才能说明我们的现在
将如何塑造我们的未来。