The genes you dont get from your parents but cant live without Devin Shuman

Inside our cells, each of us has
a second set of genes

completely separate from the 23 pairs
of chromosomes

we inherit from our parents.

And this isn’t just the case for humans—

it’s true of every animal,
plant, and fungus,

and nearly every multicellular
organism on Earth.

This second genome belongs
to our mitochondria,

an organelle inside our cells.

They’re not fully a part of us,
but they’re not separate either—

so why are they so different
from anything else in our bodies?

Approximately 1.5 billion years ago,

scientists think a single-celled organism
engulfed the mitochondria’s ancestor,

creating the predecessor
of all multicellular organisms.

Mitochondria play an essential role:

they convert energy from the food we eat
and oxygen we breathe

into a form of energy our cells can use,
which is a molecule called ATP.

Without this energy,
our cells start to die.

Humans have over 200 types of cells,

and all except mature red blood cells
have mitochondria.

That’s because a red blood cell’s job
is to transport oxygen,

which mitochondria would use up before
it could reach its destination.

So all mitochondria use oxygen
and metabolites to create energy

and have their own DNA,

but mitochondrial DNA varies more
across species than other DNA.

In mammals, mitochondria usually
have 37 genes.

In some plants, like cucumbers,
mitochondria have up to 65 genes,

and some fungal mitochondria have only 1.

A few microbes that live
in oxygen-poor environments

seem to be on the way to losing
their mitochondria entirely,

and one group, oxymonad monocercomonoides,
already has.

This variety exists because mitochondria
are still evolving,

both in tandem with the organisms
that contain them,

and separately, on their own timeline.

To understand how that’s possible,

it helps to take a closer look at what
the mitochondria inside us are doing,

starting from the moment we’re conceived.

In almost all species, mitochondrial DNA
is passed down from only one parent.

In humans and most animals,
that parent is the mother.

Sperm contain approximately
50 to 75 mitochondria in the tail,

to help them swim.

These dissolve with the tail
after conception.

Meanwhile, an egg contains thousands
of mitochondria,

each containing multiple copies
of the mitochondrial DNA.

This translates to over 150,000 copies
of mitochondrial DNA

that we inherit from our mothers,

each of which is independent
and could vary slightly from the others.

As a fertilized egg grows and divides,

those thousands of mitochondria are
divvied up into the cells

of the developing embryo.

By the time we have
differentiated tissues and organs,

variations in the mitochondrial DNA are
scattered at random throughout our bodies.

To make matters even more complex,

mitochondria have a separate replication
process from our cells.

So as our cells replicate by dividing,
mitochondria end up in new cells,

and all the while they’re fusing
and dividing themselves,

on their own timeline.

As mitochondria combine and separate,

they sequester faulty DNA or mitochondria
that aren’t working properly for removal.

All this means that the random selection
of your mother’s mitochondrial DNA

you inherit at birth

can change throughout your life
and throughout your body.

So mitochondria are dynamic and,
to a degree, independent,

but they’re also shaped
by their environments: us.

We think that long ago,

some of their genes were transferred
to their host’s genomes.

So today, although mitochondria
have their own genome

and replicate separately from the cells
that contain them,

they can’t do this without
instruction from our DNA.

And though mitochondrial DNA
is inherited from one parent,

the genes involved in building
and regulating the mitochondria

come from both.

Mitochondria continue to defy
tidy classification.

Their story is still unfolding
inside of each of our cells,

simultaneously separate
and inseparable from our own.

Learning more about them can
both give us tools

to protect human health in the future,
and teach us more about our history.

在我们的细胞内,我们每个人
都有第二组基因

,与

我们从父母那里继承的 23 对染色体完全分开。

这不仅适用于人类

——每一种动物、
植物和真菌,

以及地球上几乎所有的多细胞
生物都是如此。

第二个基因组
属于我们的线粒体,这

是我们细胞内的一种细胞器。

它们不完全是我们的一部分,
但它们也不是分开的——

那么为什么它们与
我们身体中的其他任何东西如此不同呢?

大约 15 亿年前,

科学家认为单细胞生物
吞噬了线粒体的祖先,

创造
了所有多细胞生物的前身。

线粒体起着至关重要的作用:

它们将我们吃的食物
和呼吸的氧气中

的能量转化为我们的细胞可以使用的能量形式,
这是一种称为 ATP 的分子。

没有这种能量,
我们的细胞就会开始死亡。

人类有超过 200 种细胞,

除了成熟的红细胞外,所有细胞
都有线粒体。

这是因为红细胞的工作
是运输氧气

,线粒体在
到达目的地之前会用完氧气。

因此,所有线粒体都使用氧气
和代谢物来产生能量

并拥有自己的 DNA,

但线粒体 DNA 在物种之间的差异
比其他 DNA 更大。

在哺乳动物中,线粒体通常
有 37 个基因。

在一些植物中,如黄瓜,
线粒体有多达 65 个基因,

而一些真菌线粒体只有 1

个。一些生活
在缺氧环境中的微生物

似乎正在完全失去
它们的线粒体,

其中一组是单尾单胞菌。 ,
已经有了。

之所以存在这种多样性,是因为线粒体
仍在进化,

既与包含它们的生物一起进化

,又在它们自己的时间线上单独进化。

要了解这是如何可能的,从我们受孕的

那一刻开始,仔细研究
我们体内的线粒体正在做什么会有所帮助

在几乎所有物种中,线粒体 DNA
仅从一个亲本传下来。

在人类和大多数动物中
,父母就是母亲。

精子尾部含有大约
50 到 75 个线粒体,

以帮助它们游泳。

这些
在受孕后随着尾巴溶解。

同时,一个鸡蛋含有
数千个线粒体,

每个线粒体都包含多个
线粒体 DNA 拷贝。

这意味着我们从母亲那里继承了超过 150,000
个线粒体 DNA 拷贝

每个拷贝都是独立的,
并且可能与其他拷贝略有不同。

随着受精卵的生长和分裂

,成千上万的线粒体被
分成

发育中的胚胎细胞。

当我们
分化出组织和器官时,

线粒体 DNA 的变异会
随机散布在我们的身体各处。

更复杂的是,

线粒体与我们的细胞有一个单独的复制
过程。

因此,当我们的细胞通过分裂进行复制时,
线粒体最终会进入新的细胞,

并且它们一直

在按照自己的时间线进行融合和分裂。

当线粒体结合和分离时,

它们会隔离不能正常工作的有缺陷的 DNA 或线粒体
以进行去除。

所有这一切都意味着,

您在出生时继承的母亲线粒体 DNA 的随机选择

可能会在您的一生
和整个身体中发生变化。

所以线粒体是动态的,并且
在一定程度上是独立的,

但它们也
受到环境的影响:我们。

我们认为很久以前,

他们的一些基因被转移
到了宿主的基因组中。

所以今天,虽然线粒体
有自己的基因组,

并且与包含它们的细胞分开复制

但如果没有我们 DNA 的指导,它们就无法做到这一点

尽管线粒体 DNA
是从父母一方遗传的,

但参与构建
和调节线粒体的基因

来自两者。

线粒体继续挑战
整洁的分类。

他们的故事仍在
我们的每一个细胞中展开,

同时
又与我们自己的细胞分开且密不可分。

更多地了解它们
既可以为我们提供

未来保护人类健康的工具,
也可以让我们更多地了解我们的历史。