Why are human bodies asymmetrical Leo Q. Wan

Symmetry is everywhere in nature,

and we usually associate it with beauty:

a perfectly shaped leaf,

or a butterfly with intricate patterns
mirrored on each wing.

But it turns out that asymmetry
is pretty important, too,

and more common than you might think,

from crabs with one giant pincer claw

to snail species whose shells'
always coil in the same direction.

Some species of beans only climb up
their trellises clockwise,

others, only counterclockwise,

and even though the human body
looks pretty symmetrical on the outside,

it’s a different story on the inside.

Most of your vital organs
are arranged asymmetrically.

The heart, stomach, spleen, and pancreas
lie towards the left.

The gallbladder and most of your liver
are on the right.

Even your lungs are different.

The left one has two lobes,
and the right one has three.

The two sides of your brain look similar,
but function differently.

Making sure this asymmetry is distributed
the right way is critical.

If all your internal organs are flipped,
a condition called situs inversus,

it’s often harmless.

But incomplete reversals can be fatal,

especially if the heart is involved.

But where does this asymmetry come from,

since a brand-new embryo looks identical
on the right and left.

One theory focuses
on a small pit on the embryo

called a node.

The node is lined with tiny hairs
called cilia,

while tilt away from the head
and whirl around rapidly,

all in the same direction.

This synchronized rotation pushes fluid
from the right side of the embryo

to the left.

On the node’s left-hand rim,

other cilia sense this fluid flow

and activate specific genes
on the embryo’s left side.

These genes direct the cells
to make certain proteins,

and in just a few hours,

the right and left sides of the embryo
are chemically different.

Even though they still look the same,

these chemical differences are eventually
translated into asymmetric organs.

Asymmetry shows up in the heart first.

It begins as a straight tube
along the center of the embryo,

but when the embryo
is around three weeks old,

the tube starts to bend into a c-shape

and rotate towards
the right side of the body.

It grows different
structures on each side,

eventually turning into the familiar
asymmetric heart.

Meanwhile, the other major organs
emerge from a central tube

and grow towards their ultimate positions.

But some organisms, like pigs,
don’t have those embryonic cilia

and still have asymmetric internal organs.

Could all cells be
intrinsically asymmetric?

Probably.

Bacterial colonies grow lacy branches
that all curl in the same direction,

and human cells cultured
inside a ring-shaped boundary

tend to line up
like the ridges on a cruller.

If we zoom in even more,

we see that many
of cells' basic building blocks,

like nucleic acids, proteins, and sugars,
are inherently asymmetric.

Proteins have complex asymmetric shapes,

and those proteins control
which way cells migrate

and which way embryonic cilia twirl.

These biomolecules
have a property called chirality,

which means that a molecule
and its mirror image aren’t identical.

Like your right and left hands,
they look the same,

but trying to put your right
in your left glove proves they’re not.

This asymmetry at the molecular level
is reflected in asymmetric cells,

asymmetric embryos,

and finally asymmetric organisms.

So while symmetry may be beautiful,

asymmetry holds an allure of its own,

found in its graceful whirls,

its organized complexity,

and its striking imperfections.

对称性在自然界中无处不在

,我们通常将其与美联系在一起

:形状完美的叶子,

或者每只翅膀上都有复杂图案的蝴蝶

但事实证明,不对称
也很重要,

而且比你想象的更普遍,

从长着巨大钳爪的螃蟹

到壳
总是朝同一个方向盘绕的蜗牛物种。

有些种类的豆子只能
顺时针爬上它们的格子,而

另一些只能逆时针爬上它们的格子

,尽管人体
在外面看起来很对称,

但在里面却是另一回事。

你的大部分重要器官
都是不对称排列的。

心脏、胃、脾脏和胰腺
位于左侧。

胆囊和大部分
肝脏位于右侧。

甚至你的肺也不一样。

左边的有两个裂片
,右边的有三个。

你大脑的两侧看起来相似,
但功能不同。

确保这种不对称
以正确的方式分布是至关重要的。

如果你所有的内脏都被翻转,
这种情况称为内脏倒位,

它通常是无害的。

但不完全逆转可能是致命的,

特别是如果涉及心脏。

但是这种不对称性从何而来,

因为一个全新的胚胎在左右看起来是一样
的。

一种理论侧重
于胚胎上的一个小坑,

称为节点。

该节点排列着
称为纤毛的微小毛发,

同时从头部倾斜
并快速旋转,

所有方向都相同。

这种同步旋转将流体
从胚胎右侧

推向左侧。

在节点的左侧边缘,

其他纤毛感知这种流体流动

并激活
胚胎左侧的特定基因。

这些基因指导
细胞制造某些蛋白质

,在短短几个小时内,

胚胎的左右两侧在
化学上就不同了。

尽管它们看起来仍然相同,但

这些化学差异最终会
转化为不对称的器官。

不对称首先出现在心里。

它开始是
沿着胚胎中心的直管,

但是当
胚胎大约三周大时

,管开始弯曲成 c 形

并向身体右侧旋转。


的每一侧都长出不同的结构,

最终变成了熟悉的
不对称心脏。

与此同时,其他主要器官
从中央管中出现,

并向它们的最终位置生长。

但是有些生物,比如猪,
没有那些胚胎纤毛

,仍然有不对称的内部器官。

是否所有细胞
本质上都是不对称的?

大概。

细菌菌落长出花边的树枝
,它们都向同一方向卷曲,在环形边界内

培养的人类细胞

往往
像油条上的脊一样排列。

如果我们进一步放大,

我们会看到
许多细胞的基本组成部分,

如核酸、蛋白质和糖
,本质上是不对称的。

蛋白质具有复杂的不对称形状

,这些蛋白质控制着
细胞

迁移的方式以及胚胎纤毛的旋转方式。

这些生物分子
具有称为手性的特性,

这意味着分子
及其镜像并不相同。

就像你的右手和左手一样,
它们看起来是一样的,

但试图将你的右手
放在左手套中证明它们不是。

这种分子水平
的不对称反映在不对称的细胞、

不对称的胚胎

,最后是不对称的生物体中。

因此,虽然对称性可能很美,但

不对称性也有其自身的魅力,

体现在其优美的旋转

、有条理的复杂性

和显着的缺陷中。