How humanity can reach the stars Philip Lubin

We’re here at the University
of California, Santa Barbara

to discuss a dream of humanity:

the ability to exit our solar system

and enter another solar system.

And the solution is literally
before your eyes.

So I have two things on me
that you have – I have a watch,

and I have a flashlight,

which, if it’s not on you,
it’s on your phone.

So the watch keeps time,

and my flashlight
just illuminates my environment.

So like art, to me,
science is illuminating.

I want to see reality in a different way.

When I turn on the flashlight,

suddenly the dark becomes bright,
and I suddenly see.

The flashlight and its light,

which you can see coming out –

the light on my hand
is not only illuminating my hand,

it’s actually pushing on my hand.

Light carries energy and momentum.

So the answer is not to make a spacecraft
out of a flashlight,

by having the exhaust come out this way

and the spacecraft goes that way –

that’s what we do today with chemistry.

The answer is this:

Take the flashlight and put it
somewhere on the Earth,

in orbit or on the Moon,

and then shine it on a reflector,

which propels the reflector to speeds
which can approach the speed of light.

Well, how do you make a flashlight
that’s big enough?

This isn’t going to do it,

my hand doesn’t seem to be going anywhere.

And that’s because the force
is very, very low.

So the way that you can solve this problem

is taking many, many flashlights,
which are actually lasers,

and synchronizing them in time,

and when you gang them all together
into a gigantic array,

which we call a phased array,

you then have a sufficiently
powerful system,

which, if you make it roughly
the size of a city,

it can push a spacecraft,
which is roughly the size of your hand,

to speeds which are roughly
25 percent the speed of light.

That would enable us to get
to the nearest star, Proxima Centauri,

which is a little over
four light years away,

in less than 20 years.

Initial probes would be
roughly the size of your hand,

and the size of the reflector
that you’re going to use

is going to be roughly human size,

so not a whole lot larger than myself,

but a few meters in size.

It only uses the reflection of light
from this very large laser array

to propel the spacecraft.

So let’s talk about this.

This is a lot like sailing on the ocean.

When you sail on the ocean,
you’re pushed by the wind.

And the wind then drives the sail
forward through the water.

In our case, we’re creating
an artificial wind in space

from this laser array,

except the wind is actually the photons
from the laser itself,

the light from the laser becomes the wind

upon which we sail.

It is a very directed light –

it’s often called directed energy.

So why is this possible today,

why can we talk about
going to the stars today,

when 60 years ago,

when the space program began in earnest,

people would have said,
“That’s not possible”?

Well, the reason it’s possible today
has a lot to do with the consumer,

and the very fact that you’re watching me.

You’re watching me
over a high-speed internet,

which is dominated by the photonics
of sending data over fiber optics.

Photonics essentially allow
the internet to exist

in the way it does today.

The ability to send vast amounts
of data very quickly

is the same technology
that we’re going to use

to send spacecraft
very quickly to the stars.

You effectively have an infinite
supply of propellent,

you can turn it on and off as needed.

You do not leave the laser array
that produces the light on

for the entire journey.

For small spacecraft,
it’s only on for a few minutes,

and then it’s like shooting a gun.

You have a projectile
which just moves ballistically.

Even if we, as humans,
are not on the spacecraft,

at least we have the ability
to send out such spacecraft.

You want to remotely view,

or have remote imaging and remote sensing,

of an object.

So when we go to Jupiter, for example,

with a flyby mission,

we are taking pictures of Jupiter,

we’re measuring the magnetic field,

the particle density,

and we’re basically exploring remotely.

The same way that you are looking at me.

And all of the current missions
that are beyond the Moon

are remote-sensing missions.

What would we hope to find
if we visited an exoplanet?

Perhaps there’s life on an exoplanet,

and we would be able to see
evidence of life,

either through atmospheric biosignatures

or through, you know, a dramatic picture,

we would be able to see something
actually on the surface.

We don’t know if there’s life
elsewhere in the universe.

Perhaps on the missions that we send out,
we will find evidence for life,

perhaps we will not.

And while economics may seem
like an inappropriate thing

to bring into a talk
on interstellar capability,

it is in fact one of the driving issues
in achieving interstellar capability.

You have to get things to the point
where they’re economically affordable

to do what we want to do.

So currently,

we have systems in the lab

which have achieved the ability
to synchronize over very large scales,

out to about 10 kilometers
or roughly six miles.

We’ve been able to achieve
synchronization of laser systems,

and it’s worked beautifully.

We’ve known how to build lasers
for many decades,

but it’s only now that the technology
has gotten inexpensive enough,

and become mature enough

that we can imagine
having huge arrays, literally,

kilometer-scale arrays,
much like solar farms,

but instead of receiving light,
they transmit light.

The beauty of this type of technology
is it enables many applications,

not just relativistic flight
for small spacecraft,

but enables high-speed spacecraft,

high-speed flight in our solar system,

it enables planetary defense,

it enables space debris removal,

it enables powering of distant assets
that we may want to send power to,

such as spacecraft or bases
on the Moon or other places.

It’s an extremely versatile technology,

it’s something that humanity
would want to develop

even if they didn’t want
to send spacecraft to the stars,

because that technology
allows so many applications

that are currently not feasible.

And therefore, I feel
it’s an inevitable technology,

because we have the ability,

we just need to fine-tune the technology

and in a sense, wait for economics
to catch up with us

so that it becomes cheap enough
to build the large systems.

The smaller systems are affordable now.

And we’ve already started building
prototype systems in our lab.

So while it’s not
going to happen tomorrow,

we’ve already begun the process,

and so far, it’s looking good.

This is both a revolutionary program,

in terms of being
a transformative technology,

but it’s also an evolutionary program.

So personally,
I do not expect to be around

when the first
relativistic flight happens.

I think that’s probably 30-plus years off
before we get to that point,

and perhaps more.

But what inspires me

is to look at the ability
to achieve the final goal.

Even if it does not happen in my lifetime,

it can happen in the lifetime
of the next generation

or the generation beyond that.

The consequences are so transformative

that we literally, in my opinion,
must go down this path,

and must explore what the limitations are,

and then how do we overcome
the limitations.

The search for life on other planets

would be one of humanity’s
foremost explorations,

and if we’re able to do so,

and actually find life on another planet,

it would change humanity forever.

Everything is profound in life.

If you look deep enough,

you’ll find something incredibly complex
and interesting and beautiful in life.

And the same is true
with the lowly photon

that we use to see every day.

But when we look outside
and we imagine something vastly greater,

an array of lasers that are synchronized,

we could imagine things
which are just extraordinary in life.

And the ability to go to another star

is one of those
extraordinary capabilities.

(Birds chirping)

我们在
加州大学圣巴巴拉分校

讨论人类的梦想

:能够离开我们的太阳系

并进入另一个太阳系。

解决方案就
在您的眼前。

所以我身上有两件
你有的东西——我有一块手表,

还有一个手电筒

,如果它不在你身上,
它就在你的手机上。

所以手表保持时间

,我的手电筒
只是照亮我的环境。

所以就像艺术一样,对我来说,
科学是有启发性的。

我想以不同的方式看待现实。

当我打开手电筒时,

突然黑暗变得明亮
,我突然看到了。

手电筒和它的光

,你可以看到出来——

我手上的光
不仅照亮了我的手,

它实际上还在推动我的手。

光携带能量和动量。

因此,答案不是用手电筒制造宇宙飞船

,而是让废气从这个方向排出

,而宇宙飞船也朝着那个方向前进——

这就是我们今天对化学所做的事情。

答案是这样的:

拿起手电筒,把它
放在地球上的某个地方

、轨道上或月球上,

然后将它照射到反射器上,

反射器将反射器推到
接近光速的速度。

那么,你如何制作一个
足够大的手电筒呢?

这不行,

我的手似乎哪儿也去不了。

那是因为力
非常非常低。

所以解决这个问题的方法

就是拿很多很多的手电筒
,其实就是激光

,及时同步

,当你把它们组合
成一个巨大的阵列

,我们称之为相控阵,

你就有了 足够
强大的系统

,如果你把它做成
一个城市的大小,

它可以推动一个
大约有你的手那么大的航天器,其速度大约

是光速的 25%。

这将使我们能够在不到 20 年的时间内
到达最近的恒星——比邻星,

它距离我们有
4 光年多一点

最初的探针
大约有你的手

那么大
,你要使用

的反射器的大小将大约是人类的大小,

所以不会比我大很多,

但有几米大。

它只利用
这个非常大的激光阵列的光反射

来推动航天器。

所以让我们谈谈这个。

这很像在海上航行。

当你在海上航行时,
你会被风推动。

然后风推动帆
在水中前进。

在我们的例子中,我们通过这个激光阵列
在太空中创造了一种人造风

除了风实际上是
来自激光本身的光子,

来自激光的光变成

了我们航行的风。

它是一种非常定向的光——

它通常被称为定向能量。

那么为什么今天可以,

为什么我们今天可以谈论
去星星,

当60年前,

当太空计划正式开始时,

人们会说,
“那不可能”?

嗯,今天可能的原因
与消费者有很大关系,

而且你正在关注我的事实。


在高速互联网上看着我,

这主要是
通过光纤发送数据的光子学。

光子学本质上
允许互联网以

今天的方式存在。 快速

发送大量数据的能力与

我们将

用来将航天器
快速发送到恒星的技术相同。

您实际上拥有无限
的推进剂供应,

您可以根据需要打开和关闭它。 在整个旅程中,

您不会让产生光的激光阵列
保持开启状态

对于小型航天器来说,
它只开了几分钟,

然后就像开枪一样。

你有一个弹道移动的弹丸

就算我们人类
不在飞船上,

至少我们有
能力发出这样的飞船。

您想要远程查看对象

,或进行远程成像和遥感

例如,当我们去木星

执行飞越任务时,

我们正在拍摄木星的照片,

我们正在测量磁场

、粒子密度,

而且我们基本上是在远程探索。

就像你看着我一样。

目前所有
超越月球

的任务都是遥感任务。

如果我们访问一颗系外行星,我们希望找到什么?

也许系外行星上有生命

,我们将能够看到
生命的证据,

无论是通过大气生物特征

还是通过,你知道的,一张戏剧性的图片,

我们将能够
在表面上看到一些实际的东西。

我们不知道宇宙的其他地方是否有生命

也许在我们发出的任务中,
我们会找到生命的证据,

也许我们不会。

虽然经济学
似乎不适合

谈论星际能力,

但实际上它是
实现星际能力的驱动问题之一。

您必须使事情达到
经济上负担得起的程度

才能做我们想做的事情。

所以目前,

我们实验室

的系统已经实现了
在非常大的范围内同步的能力

,大约 10 公里
或大约 6 英里。

我们已经能够实现
激光系统的同步,

而且效果很好。 几十年来,

我们已经知道如何制造激光器

但直到现在这项技术
已经变得足够便宜,

并且变得足够成熟,

以至于我们可以想象
拥有巨大的阵列,从字面上看,是

千米级阵列,
就像太阳能农场一样,

但取而代之的是 接收光,
它们传输光。

这种技术的美妙之处
在于它可以实现许多应用,

不仅可以
用于小型航天器的相对论飞行,

还可以实现高速航天器、

太阳系中的高速飞行、

行星防御、

空间碎片清除、


我们可能想要向其发送电力的遥远资产供电,

例如航天器或
月球或其他地方的基地。

这是一种用途极其广泛的技术,

即使人类
不想将航天器送上星际,它也是人类想要开发的东西,

因为该技术

允许许多目前不可行的应用。

因此,我觉得
这是一个不可避免的技术,

因为我们有能力,

我们只需要微调技术

,从某种意义上说,等待
经济赶上

我们,让它变得足够便宜
来构建大型系统。

较小的系统现在可以负担得起。

我们已经开始
在我们的实验室中构建原型系统。

所以虽然
明天不会发生,

但我们已经开始了这个过程

,到目前为止,它看起来不错。

这既是一个革命性的计划

,就作为
一种变革性技术而言,

但它也是一个进化计划。

所以就个人而言,
我不希望

在第一次
相对论飞行发生时出现。

我认为
在我们达到这一点之前可能还有 30 多年的时间,

甚至可能更多。

但激励我的


看实现最终目标的能力。

即使它不会发生在我的有生之年,

它也可能发生在
下一代

或之后的一代人的有生之年。

后果是如此具有变革性

,以至于在我看来,我们
必须沿着这条路走下去

,必须探索限制是什么,

然后我们如何
克服限制。

在其他星球上寻找生命

将是人类
最重要的探索之一

,如果我们能够这样做,

并真正在另一个星球上找到生命,

它将永远改变人类。

生活中的一切都是深刻的。

如果你看得足够深,

你会发现生活中的某些东西非常复杂
、有趣和美丽。

我们每天看到
的微弱光子也是

如此。

但是当我们向外看时
,我们会想象一些更大的东西,

一组同步的激光,

我们可以想象
生活中的非凡事物。

而去另一颗星的能力

就是那些
非凡的能力之一。

(鸟鸣)