The mysterious microbes living deep inside the earth and how they could help humanity K. Lloyd

It may seem like we’re all standing
on solid earth right now,

but we’re not.

The rocks and the dirt underneath us
are crisscrossed by tiny little fractures

and empty spaces.

And these empty spaces are filled
with astronomical quantities of microbes,

such as these ones.

The deepest that we found microbes
so far into the earth

is five kilometers down.

So like, if you pointed
yourself at the ground

and took off running into the ground,

you could run an entire 5K race
and microbes would line your whole path.

So you may not have ever thought
about these microbes

that are deep inside earth’s crust,

but you probably thought
about the microbes living in our guts.

If you add up the gut microbiomes

of all the people
and all the animals on the planet,

collectively, this weighs
about 100,000 tons.

This is a huge biome that we carry
in our bellies every single day.

We should all be proud.

(Laughter)

But it pales in comparison
to the number of microbes

that are covering
the entire surface of the earth,

like in our soils,
our rivers and our oceans.

Collectively, these weigh
about two billion tons.

But it turns out that the majority
of microbes on earth

aren’t even in oceans or our guts
or sewage treatment plants.

Most of them are actually
inside the earth’s crust.

So collectively,
these weigh 40 billion tons.

This is one of the biggest
biomes on the planet,

and we didn’t even know it existed
until a few decades ago.

So the possibilities
for what life is like down there,

or what it might do for humans,

are limitless.

This is a map showing a red dot

for every place where we’ve gotten
pretty good deep subsurface samples

with modern microbiological methods,

and you may be impressed

that we’re getting a pretty good
global coverage,

but actually, if you remember
that these are the only places

that we have samples from,
it looks a little worse.

If we were all in an alien spaceship,

trying to reconstruct a map of the globe
from only these samples,

we’d never be able to do it.

So people sometimes say to me,

“Yeah, there’s a lot of microbes
in the subsurface, but …

aren’t they just kind of dormant?”

This is a good point.

Relative to a ficus plant or the measles
or my kid’s guinea pigs,

these microbes probably
aren’t doing much of anything at all.

We know that they have to be slow,
because there’s so many of them.

If they all started dividing
at the rate of E. coli,

then they would double the entire
weight of the earth, rocks included,

over a single night.

In fact, many of them probably haven’t
even undergone a single cell division

since the time of ancient Egypt.

Which is just crazy.

Like, how do you wrap your head
around things that are so long-lived?

But I thought of an analogy
that I really love,

but it’s weird and it’s complicated.

So I hope that you can all
go there with me.

Alright, let’s try it.

It’s like trying to figure out
the life cycle of a tree …

if you only lived for a day.

So like if human life span was only a day,
and we lived in winter,

then you would go your entire life

without ever seeing a tree
with a leaf on it.

And there would be so many
human generations

that would pass by within a single winter

that you may not even have access
to a history book

that says anything other than the fact
that trees are always lifeless sticks

that don’t do anything.

Of course, this is ridiculous.

We know that trees
are just waiting for summer

so they can reactivate.

But if the human life span

were significantly shorter
than that of trees,

we might be completely oblivious
to this totally mundane fact.

So when we say that these deep
subsurface microbes are just dormant,

are we like people who die after a day,
trying to figure out how trees work?

What if these deep subsurface organisms

are just waiting
for their version of summer,

but our lives are too short
for us to see it?

If you take E. coli
and seal it up in a test tube,

with no food or nutrients,

and leave it there for months to years,

most of the cells die off, of course,
because they’re starving.

But a few of the cells survive.

If you take these old surviving cells

and compete them,
also under starvation conditions,

against a new, fast-growing
culture of E. coli,

the grizzled old tough guys
beat out the squeaky clean upstarts

every single time.

So this is evidence there’s actually
an evolutionary payoff

to being extraordinarily slow.

So it’s possible

that maybe we should not equate
being slow with being unimportant.

Maybe these out-of-sight,
out-of-mind microbes

could actually be helpful to humanity.

OK, so as far as we know,

there are two ways to do
subsurface living.

The first is to wait for food
to trickle down from the surface world,

like trying to eat the leftovers
of a picnic that happened 1,000 years ago.

Which is a crazy way to live,

but shockingly seems to work out
for a lot of microbes in earth.

The other possibility
is for a microbe to just say,

“Nah, I don’t need the surface world.

I’m good down here.”

For microbes that go this route,

they have to get everything
that they need in order to survive

from inside the earth.

Some things are actually
easier for them to get.

They’re more abundant inside the earth,

like water or nutrients,
like nitrogen and iron and phosphorus,

or places to live.

These are things that we literally
kill each other to get ahold of

up at the surface world.

But in the subsurface,
the problem is finding enough energy.

Up at the surface,

plants can chemically knit together
carbon dioxide molecules into yummy sugars

as fast as the sun’s photons
hit their leaves.

But in the subsurface, of course,
there’s no sunlight,

so this ecosystem has to solve the problem

of who is going to make the food
for everybody else.

The subsurface needs something
that’s like a plant

but it breathes rocks.

Luckily, such a thing exists,

and it’s called a chemolithoautotroph.

(Laughter)

Which is a microbe
that uses chemicals – “chemo,”

from rocks – “litho,”

to make food – “autotroph.”

And they can do this
with a ton of different elements.

They can do this with sulphur,
iron, manganese, nitrogen, carbon,

some of them can use
pure electrons, straight up.

Like, if you cut the end
off of an electrical cord,

they could breathe it like a snorkel.

(Laughter)

These chemolithoautotrophs

take the energy that they get
from these processes

and use it to make food, like plants do.

But we know that plants do more
than just make food.

They also make a waste product, oxygen,

which we are 100 percent dependent upon.

But the waste product
that these chemolithoautotrophs make

is often in the form of minerals,

like rust or pyrite, like fool’s gold,

or carminites, like limestone.

So what we have are microbes
that are really, really slow, like rocks,

that get their energy from rocks,

that make as their waste
product other rocks.

So am I talking about biology,
or am I talking about geology?

This stuff really blurs the lines.

(Laughter)

So if I’m going to do this thing,

and I’m going to be a biologist
who studies microbes

that kind of act like rocks,

then I should probably
start studying geology.

And what’s the coolest part of geology?

Volcanoes.

(Laughter)

This is looking inside the crater
of Poás Volcano in Costa Rica.

Many volcanoes on earth arise
because an oceanic tectonic plate

crashes into a continental plate.

As this oceanic plate subducts

or gets moved underneath
this continental plate,

things like water and carbon dioxide
and other materials

get squeezed out of it,

like ringing a wet washcloth.

So in this way, subduction zones
are like portals into the deep earth,

where materials are exchanged between
the surface and the subsurface world.

So I was recently invited
by some of my colleagues in Costa Rica

to come and work with them
on some of the volcanoes.

And of course I said yes,
because, I mean, Costa Rica is beautiful,

but also because it sits on top
of one of these subduction zones.

We wanted to ask
the very specific question:

Why is it that the carbon dioxide

that comes out of this deeply buried
oceanic tectonic plate

is only coming out of the volcanoes?

Why don’t we see it distributed
throughout the entire subduction zone?

Do the microbes have something
to do with that?

So this is a picture of me
inside Poás Volcano,

along with my colleague
Donato Giovannelli.

That lake that we’re standing next to
is made of pure battery acid.

I know this because we were measuring
the pH when this picture was taken.

And at some point while
we were working inside the crater,

I turned to my Costa Rican colleague
Carlos Ramírez and I said,

“Alright, if this thing
starts erupting right now,

what’s our exit strategy?”

And he said, “Oh, yeah,
great question, it’s totally easy.

Just turn around and enjoy the view.”

(Laughter)

“Because it will be your last.”

(Laughter)

And it may sound like
he was being overly dramatic,

but 54 days after I was standing
next to that lake,

this happened.

Audience: Oh!

Freaking terrifying, right?

(Laughs)

This was the biggest eruption
this volcano had had in 60-some-odd years,

and not long after this video ends,

the camera that was taking
the video is obliterated

and the entire lake
that we had been sampling

vaporizes completely.

But I also want to be clear

that we were pretty sure
this was not going to happen

on the day that we were
actually in the volcano,

because Costa Rica monitors
its volcanoes very carefully

through the OVSICORI Institute,

and we had scientists from that institute
with us on that day.

But the fact that it erupted
illustrates perfectly

that if you want to look
for where carbon dioxide gas

is coming out of this oceanic plate,

then you should look no further
than the volcanoes themselves.

But if you go to Costa Rica,

you may notice that in addition
to these volcanoes

there are tons of cozy little hot springs
all over the place.

Some of the water in these hot springs
is actually bubbling up

from this deeply buried oceanic plate.

And our hypothesis was
that there should be carbon dioxide

bubbling up with it,

but something deep underground
was filtering it out.

So we spent two weeks
driving all around Costa Rica,

sampling every hot spring we could find –

it was awful, let me tell you.

And then we spent the next two years
measuring and analyzing data.

And if you’re not a scientist, I’ll just
let you know that the big discoveries

don’t really happen
when you’re at a beautiful hot spring

or on a public stage;

they happen when you’re hunched
over a messy computer

or you’re troubleshooting
a difficult instrument,

or you’re Skyping your colleagues

because you are completely
confused about your data.

Scientific discoveries,
kind of like deep subsurface microbes,

can be very, very slow.

But in our case,
this really paid off this one time.

We discovered that literally
tons of carbon dioxide

were coming out of this
deeply buried oceanic plate.

And the thing that was keeping
them underground

and keeping it from being released
out into the atmosphere

was that deep underground,

underneath all the adorable sloths
and toucans of Costa Rica,

were chemolithoautotrophs.

These microbes and the chemical processes
that were happening around them

were converting this carbon dioxide
into carbonate mineral

and locking it up underground.

Which makes you wonder:

If these subsurface processes
are so good at sucking up

all the carbon dioxide
coming from below them,

could they also help us
with a little carbon problem

we’ve got going on up at the surface?

Humans are releasing enough
carbon dioxide into our atmosphere

that we are decreasing
the ability of our planet

to support life as we know it.

And scientists and engineers
and entrepreneurs

are working on methods
to pull carbon dioxide

out of these point sources,

so that they’re not released
into the atmosphere.

And they need to put it somewhere.

So for this reason,

we need to keep studying places
where this carbon might be stored,

possibly in the subsurface,

to know what’s going to happen to it
when it goes there.

Will these deep subsurface microbes
be a problem because they’re too slow

to actually keep anything down there?

Or will they be helpful

because they’ll help convert this stuff
to solid carbonate minerals?

If we can make such a big breakthrough

just from one study
that we did in Costa Rica,

then imagine what else
is waiting to be discovered down there.

This new field of geo-bio-chemistry,
or deep subsurface biology,

or whatever you want to call it,

is going to have huge implications,

not just for mitigating climate change,

but possibly for understanding
how life and earth have coevolved,

or finding new products that are useful
for industrial or medical applications.

Maybe even predicting earthquakes

or finding life outside our planet.

It could even help us understand
the origin of life itself.

Fortunately, I don’t have
to do this by myself.

I have amazing colleagues
all over the world

who are cracking into the mysteries
of this deep subsurface world.

And it may seem like life
buried deep within the earth’s crust

is so far away from our daily experiences
that it’s kind of irrelevant.

But the truth is
that this weird, slow life

may actually have the answers
to some of the greatest mysteries

of life on earth.

Thank you.

(Applause)

看起来我们现在都
站在坚实的地球上,

但我们不是。

我们脚下的岩石和泥土
被微小的裂缝

和空地纵横交错。

这些空旷的空间充满
了天文数量的微生物,

比如这些微生物。

迄今为止,我们在地球深处发现的微生物最深处

是 5 公里。

就像,如果你将
自己指向地面

并开始跑到地面上,

你可以跑一整场 5K 比赛,
而微生物会排列在你的整个路径上。

所以你可能从来没有想过

地壳深处的这些微生物,

但你可能
想过生活在我们肠道中的微生物。

如果你

把地球上所有人和所有动物的肠道微生物群

加起来,这总重
约 100,000 吨。

这是一个巨大的生物群落
,我们每天都在肚子里。

我们都应该感到自豪。

(笑声)

但与

覆盖整个地球表面的微生物数量相比,它就相形见绌了,

比如在我们的土壤
、河流和海洋中。

这些加起来重
约 20 亿吨。

但事实证明,地球上的大多数
微生物

甚至不在海洋、我们的肠道
或污水处理厂中。

它们中的大多数实际上都
在地壳内。

所以总的来说,
这些重达400亿吨。

这是地球上最大的
生物群落之一,直到几十年前

我们才知道它的存在

因此
,那里的生活是什么样的,

或者它可能为人类做些什么的可能性

是无限的。

这是一张地图

,每个地方都有一个红点,我们用现代微生物学方法获得了
相当好的深层地下样本

,你可能会对

我们获得相当好的
全球覆盖率印象深刻,

但实际上,如果你还记得
这些 是

我们唯一有样本的地方,
它看起来有点糟糕。

如果我们都在一艘外星飞船上,

试图
仅从这些样本中重建全球地图,

我们将永远无法做到。

所以人们有时对我说,

“是的,地下有很多
微生物,但是……

它们不只是处于休眠状态吗?”

这是个好的观点。

相对于榕属植物、麻疹
或我孩子的豚鼠,

这些微生物可能
根本没有做任何事情。

我们知道它们必须缓慢,
因为它们太多了。

如果它们都开始
以大肠杆菌的速度分裂,

那么它们将在一夜之间
使地球(包括岩石)的整个重量增加一倍

事实上,自古埃及时代以来,它们中的许多可能甚至没有
经历过一次细胞分裂

这太疯狂了。

就像,你如何把头
绕在那些长寿的东西上?

但我想到了一个
我非常喜欢的类比,

但它很奇怪而且很复杂。

所以我希望你们都可以
和我一起去那里。

好吧,让我们试试吧。

这就像试图弄清楚
一棵树的生命周期……

如果你只活了一天。

因此,就像如果人类的寿命只有一天,
而我们生活在冬天,

那么您将

一生都看不到一棵树上长
着叶子。

而且会有这么多
人类世代

在一个冬天

过去,以至于你甚至可能无法接触
到一本历史书


除了树木总是无生命的树枝

,什么都做不了。

当然,这很荒谬。

我们知道树木
只是在等待夏天,

这样它们才能重新激活。

但是,如果人类的寿命

比树木的寿命短得多,

我们可能会完全
忘记这个完全平凡的事实。

因此,当我们说这些深层
地下微生物只是处于休眠状态时

,我们是否就像一天后死去的人一样,
试图弄清楚树木是如何工作的?

如果这些深层地下生物

只是在
等待它们的夏天版本,

但我们的生命太短
,我们无法看到呢?

如果您将
大肠杆菌密封在试管中

,没有食物或营养,

然后将其放置数月至数年,那么

大多数细胞当然会死亡,
因为它们正在挨饿。

但是一些细胞存活了下来。

如果你把这些旧的存活细胞

和它们竞争,
同样在饥饿的条件下,

与一种新的、快速生长
的大肠杆菌培养物竞争

,头发花白的老硬汉每次都
击败了吱吱作响的干净暴发户

因此,这证明了异常缓慢实际上是
一种进化回报

因此

,也许我们不应该将
缓慢等同于不重要。

也许这些看不见
,心不在焉的微生物

实际上可能对人类有所帮助。

好的,据我们所知,

有两种方法可以进行
地下生活。

第一个是等待
食物从地表世界滴落下来,

就像试图吃掉
1000 年前发生的野餐的剩菜一样。

这是一种疯狂的生活方式,

但令人震惊的是,它似乎
适用于地球上的许多微生物。

另一种可能性
是微生物会说,

“不,我不需要地表世界。

我在这里很好。”

对于走这条路的微生物来说,

它们必须获得从地球内部
生存所需的一切

有些东西
对他们来说实际上更容易得到。

它们在地球内部更为丰富,

如水或营养物质,
如氮、铁和磷,

或居住的地方。

这些是我们从字面上
互相残杀以获得

地表世界的东西。

但在地下
,问题在于找到足够的能量。

在地表,

植物可以将
二氧化碳分子化学结合成美味的糖

,就像太阳的光子
撞击它们的叶子一样快。

但是在地下,当然,
没有阳光,

所以这个生态系统必须

解决谁来为
其他人制造食物的问题。

地下需要
一些像植物

但会呼吸岩石的东西。

幸运的是,存在这样的东西

,它被称为化能自养生物。

(笑声)

这是
一种使用化学物质的微生物——来自岩石的“化学物质”

——“石刻”

来制造食物——“自养生物”。

他们可以
用大量不同的元素来做到这一点。

他们可以用硫、
铁、锰、氮、碳来做到这一点,

其中一些可以直接使用
纯电子。

就像,如果你切断电线的末端

他们可以像呼吸管一样呼吸它。

(笑声)

这些化能自养

生物
从这些过程中获取能量,

并用它来制造食物,就像植物一样。

但我们知道植物
不仅仅是制造食物。

他们还制造一种废物,氧气

,我们 100% 依赖它。

但是
这些化能自养生物产生

的废物通常以矿物质的形式出现,

如铁锈或黄铁矿,如愚人金,

或胭脂红,如石灰石。

所以我们所拥有的
是非常非常缓慢的微生物,就像岩石一样,

它们从岩石中获取能量

,并将其他岩石作为它们的
废物。

那么我是在谈论生物学,
还是在谈论地质学?

这东西真的模糊了线条。

(笑声)

所以如果我要做这件事,

并且我要成为
一名研究

像岩石一样的微生物的生物学家,

那么我可能应该
开始学习地质学。

地质学中最酷的部分是什么?

火山。

(笑声)

这是
哥斯达黎加波阿斯火山的火山口。

地球上的许多火山都是
由于海洋构造板块

撞击大陆板块而产生的。

当这个海洋板块俯冲

或移动到
这个大陆板块下方时

,水、二氧化碳
和其他物质

会被挤出,

就像湿毛巾一样。

所以通过这种方式,俯冲
带就像进入地球深处的门户,


地表和地下世界之间进行物质交换。

所以我最近
被哥斯达黎加的一些同事

邀请来和他们一起
研究一些火山。

当然我说是的,
因为,我的意思是,哥斯达黎加很美,

还因为它位于
这些俯冲带之一的顶部。

我们
想问一个非常具体的问题:

为什么

从这个深埋的
海洋构造板块

中释放出来的二氧化碳只是从火山中释放出来的?

为什么我们没有看到它分布
在整个俯冲带?

微生物
与此有关吗?

这是一张我
在波阿斯火山内的照片,

还有我的同事
Donato Giovannelli。

我们站在旁边的那个湖
是由纯电池酸制成的。

我知道这一点,因为我们
在拍摄这张照片时正在测量 pH 值。


我们在火山口内工作的某个时间点,

我转向我的哥斯达黎加同事
卡洛斯·拉米雷斯,我说:

“好吧,如果这
件事现在开始爆发,

我们的退出策略是什么?”

他说,“哦,是的,
很好的问题,这很容易。

转身欣赏美景。”

(笑声)

“因为这将是你的最后一次。”

(笑声

) 听起来
他可能过于戏剧化,

但在我
站在那个湖边 54 天后,

这件事发生了。

观众:哦!

太吓人了吧?

(笑)

这是
这座火山 60 多年以来最大的一次喷发,

视频结束后不久

,拍摄视频的摄像头
就消失


,我们一直在采样的整个湖都

完全蒸发了。

但我也想明确

一点,我们很确定
这不会发生

在我们
实际在火山中的那一天,

因为哥斯达黎加通过 OVSICORI 研究所
非常仔细地监测其火山

,我们有来自该研究所的科学家
那天的我们。

但它爆发的事实
完美地

说明,如果你想
寻找二氧化碳

气体从这个海洋板块中流出的地方,

那么你应该
只看火山本身。

但如果你去哥斯达黎加,

你可能会注意到,
除了这些火山之外,

到处都是舒适的小
温泉。

这些温泉中的一些水
实际上是

从这个深埋的海洋板块中冒出来的。

我们的假设是
,应该有二氧化碳

随着它冒泡,

但地下深处有什么东西
把它过滤掉了。

所以我们花了两周的时间
在哥斯达黎加周围开车,

采样我们能找到的每一个温泉——

让我告诉你,这太糟糕了。

然后我们在接下来的两年里
测量和分析数据。

如果你不是科学家,我
会让你知道,

当你在美丽的温泉

或公共舞台上时,不会真正发生重大发现;

当您
弯腰面对一台凌乱的计算机,

或者您正在对
一台困难的仪器进行故障排除,

或者您正在与您的同事进行 Skype 通话,

因为您
对自己的数据完全感到困惑时,它们就会发生。

科学发现,
有点像地下深处的微生物,

可能非常非常缓慢。

但在我们的案例中,
这一次真的得到了回报。

我们发现,

从这
片深埋的海洋板块中,确实有成吨的二氧化碳流出。

使
它们保持在地下

并防止其
释放到大气

中的是,

在哥斯达黎加所有可爱的树懒
和巨嘴鸟的地下深处,

是化能自养生物。

这些微生物和
发生在它们周围的化学过程

正在将这种二氧化碳
转化为碳酸盐矿物

并将其锁定在地下。

这让你想知道:

如果这些地下
过程如此擅长吸收

来自它们下方的所有二氧化碳

,它们是否也能帮助我们
解决

我们在地表上遇到的一些碳问题?

人类正在
向我们的大气中释放足够多的二氧化碳

,以至于我们正在降低

地球支持我们所知道的生命的能力。

科学家、工程师
和企业家

正在研究

从这些点源中提取二氧化碳的方法,

这样它们就不会释放
到大气中。

他们需要把它放在某个地方。

因此,出于这个原因,

我们需要继续研究
这种碳可能储存的地方,

可能是在地下,

以了解
当它到达那里时会发生什么。

这些深层地下微生物是否
会成为一个问题,因为它们太慢而

无法真正将任何东西保存在那里?

还是它们会有所帮助,

因为它们会帮助将这些东西转化
为固体碳酸盐矿物?

如果我们能够

仅从
我们在哥斯达黎加所做的一项研究中取得如此重大的突破,

那么想象一下那里还有
什么等着我们去发现。

这个新的地球生物化学领域,
或深层地下生物学,

或任何你想称之为的东西,

都将产生巨大的影响,

不仅对减缓气候变化,

而且可能对
理解生命和地球是如何共同进化的,

或者发现
对工业或医疗应用有用的新产品。

甚至可以预测地震

或在我们星球之外寻找生命。

它甚至可以帮助我们了解
生命本身的起源。

幸运的是,我不必
自己做这件事。

我在世界各地都有了不起的同事

他们正在破解
这个地下深处世界的奥秘。

似乎
深埋在地壳中的生命

与我们的日常经历相去甚远,
以至于有点无关紧要。

但事实是
,这种奇怪而缓慢的生命

实际上可能

对地球上一些最大的生命奥秘有答案。

谢谢你。

(掌声)