Animation basics The optical illusion of motion TEDEd

Take a series of still, sequential images.

Let’s look at them one by one.

Faster.

Now, let’s remove the gaps,

go faster still.

Wait for it …

Bam!

Motion!

Why is that?

Intellectually, we know we’re just looking
at a series of still images,

but when we see them change fast enough,

they produce the optical illusion
of appearing as a single, persistent image

that’s gradually changing
form and position.

This effect is the basis
for all motion picture technology,

from our LED screens of today

to their 20th-century
cathode ray forebearers,

from cinematic film projection
to the novelty toy,

even, it’s been suggested,
all the way back to the Stone Age

when humans began painting on cave walls.

This phenomenon of perceiving
apparent motion in successive images

is due to a characteristic
of human perception

historically referred
to as “persistence of vision.”

The term is attributed

to the English-Swiss physicist
Peter Mark Roget,

who, in the early 19th century,

used it to describe
a particular defect of the eye

that resulted in a moving object

appearing to be still
when it reached a certain speed.

Not long after, the term
was applied to describe the opposite,

the apparent motion of still images,

by Belgian physicist Joseph Plateau,
inventor of the phenakistoscope.

He defined persistence of vision
as the result of successive afterimages,

which were retained
and then combined in the retina,

making us believe that what we were seeing
is a single object in motion.

This explanation was widely accepted
in the decades to follow

and up through the turn
of the 20th century,

when some began to question
what was physiologically going on.

In 1912, German psychologist
Max Wertheimer

outlined the basic primary stages
of apparent motion

using simple optical illusions.

These experiments led him to conclude

the phenomenon was due to processes
which lie behind the retina.

In 1915, Hugo Münsterberg,

a German-American pioneer
in applied psychology,

also suggested that the apparent motion
of successive images

is not due to their being
retained in the eye,

but is superadded
by the action of the mind.

In the century to follow,
experiments by physiologists

have pretty much confirmed
their conclusions.

As it relates to the illusion
of motion pictures,

persistence of vision
has less to do with vision itself

than how it’s interpreted in the brain.

Research has shown that different aspects
of what the eye sees,

like form, color, depth, and motion,

are transmitted to different areas
of the visual cortex

via different pathways from the retina.

It’s the continuous interaction

of various computations
in the visual cortex

that stitch those different
aspects together

and culminate in the perception.

Our brains are constantly working,

synchronizing what we see,
hear, smell, and touch

into meaningful experience

in the moment-to-moment
flow of the present.

So, in order to create the illusion
of motion in successive images,

we need to get the timing of our intervals

close to the speed at which our brains
process the present.

So, how fast is the present
happening according to our brains?

Well, we can get an idea

by measuring how fast
the images need to be changing

for the illusion to work.

Let’s see if we can figure it out
by repeating our experiment.

Here’s the sequence presented
at a rate of one frame per two seconds

with one second of black in between.

At this rate of change,

with the blank space
separating the images,

there’s no real motion perceptible.

As we lessen the duration of blank space,

a slight change in position
becomes more apparent,

and you start to get an inkling
of a sense of motion

between the disparate frames.

One frame per second.

Two frames per second.

Four frames per second.

Now we’re starting
to get a feeling of motion,

but it’s really not very smooth.

We’re still aware of the fact
that we’re looking at separate images.

Let’s speed up. Eight frames per second.

12 frames per second.

It looks like we’re about there.

At 24 frames per second,
the motion looks even smoother.

This is standard full speed.

So, the point at which we lose
awareness of the intervals

and begin to see apparent motion

seems to kick in at around
eight to 12 frames per second.

This is in the neighborhood
of what science has determined

to be the general threshold
of our awareness

of seeing separate images.

Generally speaking,
we being to lose that awareness

at intervals of around
100 milliseconds per image,

which is equal to a frame rate
of around ten frames per second.

As the frame rate increases,

we lose awareness
of the intervals completely

and are all the more convinced
of the reality of the illusion.

拍摄一系列静止的、连续的图像。

让我们一一看看。

快点。

现在,让我们消除差距,

走得更快。

等等……

砰!

运动!

这是为什么?

从理智上讲,我们知道我们只是在
看一系列静止的图像,

但是当我们看到它们变化得足够快时,

它们会产生一种视觉错觉
,即表现为一个单一的、持久的图像

,并逐渐改变
形式和位置。

这种效果
是所有电影技术的基础,

从我们今天的 LED 屏幕

到 20 世纪的
阴极射线前身,

从电影放映
到新奇玩具,

甚至有人建议,
一直追溯到

石器时代 人类开始在洞穴墙壁上绘画。

这种
在连续图像中感知明显运动的现象

是由于

历史上
称为“视觉暂留”的人类感知特性。

该术语归因

于英国-瑞士物理学家
彼得·马克·罗杰 (Peter Mark Roget),

他在 19 世纪初期

用它来描述
眼睛的一种特殊缺陷

,导致运动物体

在达到一定速度时看起来是静止的。

不久之后

,比利时物理学家约瑟夫·普拉托(
phenakistoscope)的发明者使用该术语来描述相反的静止图像的明显运动。

他将视觉的持久性定义
为连续残像的结果,这些残像

被保留
并在视网膜中结合,

使我们相信我们所看到的
只是一个运动的物体。

这种解释
在随后的几十年中被广泛接受

,直到
20 世纪之交,

当时一些人开始质疑
生理上发生了什么。

1912 年,德国心理学家
Max Wertheimer 使用简单的视错觉

概述了视运动的基本初级阶段

这些实验使他得出结论,

这种现象是由于
视网膜后面的过程造成的。

1915 年

,德裔美国
应用心理学先驱 Hugo Münsterberg

也提出,
连续图像

的表观运动不是由于它们
保留在眼睛中,

而是
由心智的作用所叠加。

在接下来的一个世纪里,
生理学家的实验

几乎证实了
他们的结论。

由于它与电影的幻觉有关,因此视觉

持久性
与视觉本身的关系不大,而

与它在大脑中的解释方式有关。

研究表明,
眼睛所见的不同方面,

如形状、颜色、深度和运动,

通过视网膜的不同途径传递到
视觉皮层的不同区域

正是视觉皮层

中各种计算的持续交互将

这些不同的
方面缝合在一起

并最终形成了感知。

我们的大脑在不断地工作,

将我们看到、
听到、闻到和触摸

到的东西同步

到当下时刻的有意义的体验中

因此,为了
在连续图像中产生运动错觉,

我们需要让我们的间隔时间

接近我们大脑
处理现在的速度。

那么,
根据我们的大脑,现在发生的速度有多快?

好吧,我们可以

通过测量
图像需要多快改变

才能使错觉起作用来得到一个想法。

让我们看看我们是否可以
通过重复我们的实验来解决这个问题。

这是以
每两秒一帧的速度呈现的序列,

中间有一秒的黑色。

在这种变化速度下,

由于空白区域
将图像分开,

因此无法感知到真正的运动。

随着我们减少空白区域的持续时间,

位置的轻微变化
变得更加明显,

并且您开始对不同帧之间
的运动感有所了解

每秒一帧。

每秒两帧。

每秒四帧。

现在我们
开始有了运动的感觉,

但它真的不是很流畅。

我们仍然
知道我们正在查看单独的图像这一事实。

让我们加快速度。 每秒八帧。

每秒 12 帧。

看来我们快到了。

每秒 24 帧
,运动看起来更加流畅。

这是标准的全速。

因此,我们失去
对间隔的意识

并开始看到明显运动的点

似乎以
每秒 8 到 12 帧左右的速度开始。


与科学已确定为我们

看到单独图像的意识的一般阈值相近。

一般来说,
我们会以

每张图像大约 100 毫秒的间隔失去这种意识,

这相当于
每秒大约 10 帧的帧速率。

随着帧速率的增加,

我们
完全失去了对间隔的认识,

并且更加相信
幻觉的真实性。