How do vaccines work Kelwalin Dhanasarnsombut

In 1796, the scientist Edward Jenner

injected material from a cowpox virus
into an eight-year-old boy

with a hunch that this would provide
the protection needed

to save people from deadly outbreaks
of the related smallpox virus.

It was a success.

The eight-year-old was inoculated
against the disease

and this became the first ever vaccine.

But why did it work?

To understand how vaccines function,

we need to know how the immune system
defends us against contagious diseases

in the first place.

When foreign microbes invade us,

the immune system triggers
a series of responses

in an attempt to identify
and remove them from our bodies.

The signs that this immune
response is working

are the coughing, sneezing,
inflammation and fever we experience,

which work to trap, deter and rid the body
of threatening things, like bacteria.

These innate immune responses
also trigger our second line of defense,

called adaptive immunity.

Special cells called B cells and T cells
are recruited to fight microbes,

and also record information about them,

creating a memory of what
the invaders look like,

and how best to fight them.

This know-how becomes handy

if the same pathogen
invades the body again.

But despite this smart response,
there’s still a risk involved.

The body takes time to learn
how to respond to pathogens

and to build up these defenses.

And even then,

if a body is too weak or young
to fight back when it’s invaded,

it might face very serious risk
if the pathogen is particularly severe.

But what if we could prepare
the body’s immune response,

readying it before someone even got ill?

This is where vaccines come in.

Using the same principles
that the body uses to defend itself,

scientists use vaccines to trigger
the body’s adaptive immune system,

without exposing humans
to the full strength disease.

This has resulted in many vaccines,
which each work uniquely,

separated into many different types.

First, we have live attenuated vaccines.

These are made of the pathogen itself
but a much weaker and tamer version.

Next, we have inactive vaccines,
in which the pathogens have been killed.

The weakening and inactivation
in both types of vaccine

ensures that pathogens don’t develop
into the full blown disease.

But just like a disease,
they trigger an immune response,

teaching the body to recognize an attack

by making a profile
of pathogens in preparation.

The downside is that live attenuated
vaccines can be difficult to make,

and because they’re live
and quite powerful,

people with weaker immune systems
can’t have them,

while inactive vaccines
don’t create long-lasting immunity.

Another type, the subunit vaccine,

is only made from one part
of the pathogen, called an antigen,

the ingredient that actually triggers
the immune response.

By even further isolating
specific components of antigens,

like proteins or polysaccharides,

these vaccines can prompt
specific responses.

Scientists are now building
a whole new range of vaccines

called DNA vaccines.

For this variety, they isolate the very
genes that make the specific antigens

the body needs to trigger its immune
response to specific pathogens.

When injected into the human body,

those genes instruct cells
in the body to make the antigens.

This causes a stronger immune response,

and prepares the body
for any future threats,

and because the vaccine only includes
specific genetic material,

it doesn’t contain any other ingredients
from the rest of the pathogen

that could develop into the disease
and harm the patient.

If these vaccines become a success,

we might be able to build
more effective treatments

for invasive pathogens in years to come.

Just like Edward Jenner’s
amazing discovery

spurred on modern medicine
all those decades ago,

continuing the development of vaccines

might even allow us
to treat diseases like HIV,

malaria,

or Ebola, one day.

1796 年,科学家爱德华·詹纳(Edward Jenner)

将来自牛痘病毒的材料注射
到一个 8 岁的男孩

身上,他预感这将提供
必要的保护,

使人们免于
相关天花病毒的致命爆发。

这是成功的。

这位八岁的孩子
接种了这种疾病的

疫苗,这成为了有史以来第一种疫苗。

但为什么它起作用了?

要了解疫苗的功能,

我们首先需要知道免疫系统如何
保护我们免受传染病的侵害

当外来微生物入侵我们时

,免疫系统会触发
一系列反应

,试图识别
它们并将其从我们体内清除。

这种免疫
反应正在发挥作用的迹象是我们经历

的咳嗽、打喷嚏、
炎症和发烧,

它们可以捕捉、阻止和消除身体中
的威胁性事物,如细菌。

这些先天免疫反应
也触发了我们的第二道防线,

称为适应性免疫。

被称为 B 细胞和 T 细胞的特殊细胞
被招募来对抗微生物,

并记录有关它们的信息,

从而建立
对入侵者长相

以及如何最好地对抗它们的记忆。

如果相同的病原体
再次侵入人体,这种技术就会变得很方便。

但是,尽管做出了这种明智的反应,
但仍然存在风险。

身体需要时间来学习
如何应对病原体

并建立这些防御机制。

即便如此,

如果一个身体太虚弱或太年轻
,在受到入侵时无法反击,如果病原体特别严重,

它可能会面临非常严重的风险

但是,如果我们能够准备好
身体的免疫反应,

甚至在有人生病之前就做好准备呢?

这就是疫苗

的用武之地。科学家们使用身体用来保护自己的相同原理,

使用疫苗来
触发身体的适应性免疫系统,

而不会使人类暴露
于全部强度的疾病中。

这导致了许多疫苗
,每种疫苗都有独特的作用,

分为许多不同的类型。

首先,我们有减毒活疫苗。

这些是由病原体本身制成的,
但它是一种更弱、更温和的版本。

接下来,我们有灭活疫苗
,其中病原体已被杀死。 两种疫苗

的弱化和灭活

确保病原体不会发展
成全面爆发的疾病。

但就像疾病一样,
它们会引发免疫反应,

通过在准备过程中制作
病原体档案来教导身体识别攻击。

不利的一面是,减毒活
疫苗可能难以制造,

而且由于它们是活的
并且非常强大,

免疫系统较弱的人
无法获得它们,

而非活性疫苗
不会产生持久的免疫力。

另一种类型,亚单位疫苗,

仅由
病原体的一部分制成,称为抗原,

是实际
触发免疫反应的成分。

通过进一步分离
抗原的特定成分,

如蛋白质或多糖,

这些疫苗可以促进
特定的反应。

科学家们现在正在研制
一系列全新的疫苗,

称为 DNA 疫苗。

对于这个品种,他们分离出
制造身体所需的特定抗原的基因,

以触发其
对特定病原体的免疫反应。

当注入人体时,

这些基因会指导
体内细胞制造抗原。

这会导致更强的免疫反应,

并使身体
为未来的任何威胁做好准备,

并且由于疫苗仅包含
特定的遗传物质,

它不包含
来自其他病原体的任何其他成分,这些成分

可能会发展成疾病
并伤害患者 .

如果这些疫苗取得成功,

我们或许能够

在未来几年为侵入性病原体建立更有效的治疗方法。

就像几十年前爱德华詹纳的
惊人发现

推动了现代
医学一样,

继续开发疫苗

甚至可能让我们有朝一日
能够治疗艾滋病毒、

疟疾

或埃博拉病毒等疾病。