Why biofabrication is the next industrial revolution Suzanne Lee

I started life as a fashion designer,

working closely with textile designers
and fabric suppliers.

But today, I can no longer see
or talk to my new collaborators,

because they’re in the soil
beneath our feet,

on the shelves of our supermarkets

and in the beer I’m going to drink
when I finish this talk.

I’m talking about microbes

and designing with life.

Fifteen years ago,

I completely changed
both what I worked with

and how I worked

after a revelatory collaboration
with a biologist.

Our project gave me
a different perspective on life,

introducing a whole new
world of possibility

around how we can design and make things.

I discovered a radical
manufacturing proposition:

biofabrication.

Literally, fabricating with biology.

What does that mean?

Well, instead of processing
plants, animals or oil

to make consumer materials,

we might grow materials directly
with living organisms.

In what many are terming
“the Fourth Industrial Revolution,”

we’re thinking about the new factories
as being living cells.

Bacteria, algae, fungi, yeast:

our latest design tools
include those of biotechnology.

My own journey in biofabrication

started with a project
called “Biocouture.”

The provocation was that instead
of growing a plant, like cotton,

in a field over several months,

we could use microbes to grow
a similar cellulose material in a lab

in a few days.

Using a certain species of bacteria
in a nutrient-rich liquid,

we fermented threads of cellulose

that self-organized
into a sheet of fabric.

I dried the fabric I had grown

and cut and sewed it
into a range of garments, shoes and bags.

In other words,
in one lab we grew materials

and turned them into a range of products

in a matter of days.

And this is in contrast
to currents methods of fabric production,

where a plant is grown,

just the cotton part is harvested,

processed into a yarn,

woven into a fabric

and then potentially shipped across oceans

before being cut and sewn into a garment.

All of that can take months.

So these prototypes indicated a field

offering significant
resource efficiencies.

From reducing the water,
energy and chemistry needed

in the production of a material,

through to generating zero waste,

we grew fabrics to finished form –

if you like, “biological
additive manufacture.”

Through biofabrication,

I had replaced many
intensive man-made steps

with one biological step.

And as I engaged with this living system,

it transformed my design thinking.

Here was biology,
with no intervention from me

other than designing initial
conditions for growth,

efficiently producing a useful,
sustainable material.

So now I can’t help but see all materials
through the lens of biofabrication.

In fact, there’s a growing
global community of innovators

rethinking materials with biology.

Multiple companies are now
growing mushroom materials,

but not literally mushrooms –

using mycelium, which is
the root system of fungi,

to bind together agricultural byproducts.

It’s a process that’s been
described as “nature’s glue.”

A common way to do this
is to take a 3-D mold,

fill it with a waste crop
like corn stalks or hemp,

add water,

wait a few days for the mycelium
to grow throughout,

remove the mold,

and you’re left with a grown 3-D form.

Incredibly, we can grow
all kinds of structures

using living organisms,

from foams that can replace
plastics in footwear,

to leather-like materials without animals.

Furniture, flooring – all
are currently being prototyped.

Fungi are able to grow materials
that are naturally fire retardant,

without any chemicals.

They’re naturally hydrophobic,

meaning they won’t absorb water.

They have higher melt
temperatures than plastics.

Polystyrene can take thousands
of years to degrade.

Mushroom packaging materials

can be naturally composted
in your back garden

in as little as 30 days.

Living organisms are transforming waste

into cost-competitive,
performance-matching materials

that can start to replace plastics

and other CO2-emitting materials.

And once we start growing materials
with living organisms,

it starts to make previous methods
of manufacture seem illogical.

Take the humble house brick.

The cement industry generates
around eight percent

of global CO2 emissions.

That’s more than all the planes
and ships each year.

The cement process
requires materials to be fired in a kiln

at over 2,000 degrees Fahrenheit.

Compare this to bioMASON.

They use a soil microbe
to transform loose aggregates,

like sand or crushed stone,

into a biofabricated, or biocement, brick.

Their process happens at room temperature,

in just a couple of days.

Think: hydroponics for bricks.

An irrigation system
feeds nutrient-rich water

to trays of bricks

that have been inoculated with bacteria.

The bacteria produce crystals

that form around each grain of sand,

locking together all the loose particles

to form a solid brick.

We can now grow construction materials

in the elegant way nature does,

just like a coral reef.

And these biofabricated bricks
are nearly three times stronger

than a concrete block.

And in stark contrast
to traditional cement production,

they store more carbon than they make.

So if we could replace
the 1.2 trillion fired bricks

that are made each year

with biofabricated bricks,

we could reduce CO2 emissions

by 800 million tons every year.

(Applause)

Beyond growing materials
with living organisms,

we’re even starting to design products

that encourage their growth.

And this comes from the realization

that the very thing we’ve been trying
to marginalize – life –

might actually be
our greatest collaborator.

To that end, we’ve been
exploring all the ways

that we can grow healthy microbes
in our own ecosystems.

A great example of this is architects

who are imagining the skin of a building

to function like the bark of a tree.

But not as a cosmetic green layer.

They’re designing architectural barks

as hosts for evolving ecologies.

These surface structures
are designed to invite life in.

And if we applied the same energy
we currently do suppressing forms of life

towards cultivating life,

we’d turn the negative image
of the urban jungle

into one that literally embodies
a thriving, living ecosystem.

By actively encouraging surface
interactions with healthy microbes,

we could improve passive climate control,

stormwater management

and even reduce CO2 emissions

by lowering the energy
used to heat or cool our buildings.

We’re just beginning
to realize the potential

of nature-based technologies.

I’m excited that we’re starting
to design and biofabricate

a new material world.

It’s one that moves away
from the exploitation

of nonrenewable resources

to working with the original,
renewable life.

Instead of designing out life,

we’re designing with it and for it.

Packaging, fashion, footwear,
furniture, construction –

biofabricated products can be grown
close to centers of demand,

with local resources, less land, energy,

and even harnessing
industrial waste streams.

It used to be that the tools
of biotechnology

were the preserve of powerful,

multinational chemical
and biotech companies.

In the last century,
we expected material innovation

to come from the likes
of DuPont, Dow, BASF.

But this 21st-century material revolution
is being led by start-ups

with small teams and limited capital.

And by the way, not all their founders
have science degrees.

They include artists,
architects and designers.

Over a billion dollars
has already been invested

in start-ups biofabricating
consumer products.

I don’t think we have a choice
but to biofabricate our future.

From the jacket you’re wearing

to the chair you’re sitting in

to the home you live in,

your designed material world
shouldn’t compromise your health

or that of our planet.

If materials can’t be recycled

or naturally composted at home,

we should reject them.

I’m committed to making
this future a reality

by shining a light on all the amazing work

being done today

and by facilitating more interactions

between designers, scientists,
investors and brands.

Because we need a material revolution,

and we need it now.

Thank you.

(Applause)

我最初是一名时装设计师,

与纺织品设计师
和面料供应商密切合作。

但是今天,我再也见不到
我的新合作者或与他们交谈,

因为他们
在我们脚下的土壤中,

在我们超市的货架上,

在我结束这次谈话时要喝的啤酒中。

我说的是微生物

和生命设计。

15 年前,在与生物学家进行了一次具有启发性的合作后,

我彻底改变
了我的工作对象

和工作方式

我们的项目让我
对生活有了不同的看法,

围绕我们如何设计和制造事物引入了一个全新的可能性世界。

我发现了一个激进的
制造主张:

生物制造。

从字面上看,用生物学制造。

这意味着什么?

好吧,我们可以直接用活的有机体种植材料,而不是加工
植物、动物或油

来制造消费材料

在许多人所说的
“第四次工业革命”中,

我们将新工厂
视为活细胞。

细菌、藻类、真菌、酵母:

我们最新的设计工具
包括生物技术工具。

我自己的生物制造之旅

始于一个
名为“Biocouture”的项目。

挑衅是

,我们可以在几天内

使用微生物
在实验室中种植类似的纤维素材料,而不是在田间种植棉花等植物

在营养丰富的液体中使用某种细菌,

我们发酵了纤维素线,这些纤维素线

自组织
成一张织物。

我将自己种植和剪裁的织物晒干,

然后将其缝制
成一系列服装、鞋子和包包。

换句话说,
我们在一个实验室里培育材料

并在几天内将它们变成一系列产品

这与目前
的织物生产方法形成鲜明对比,在这种方法中,

种植植物,

只收获棉花部分,

加工成纱线,

编织成织物

,然后

在被切割和缝制成衣服之前可能运过海洋。

所有这些都可能需要几个月的时间。

因此,这些原型表明了一个

提供显着
资源效率的领域。

从减少材料生产所需的水、
能源和化学

物质,

到产生零废物,

我们将织物培育成成品形式——

如果你喜欢,“生物
添加剂制造”。

通过生物制造,

我用一个生物步骤代替了许多
密集的人造

步骤。

当我接触到这个生命系统时,

它改变了我的设计思维。

这是生物学,

除了设计
生长的初始条件外,我没有任何干预,

有效地生产出有用的、
可持续的材料。

所以现在我不禁
通过生物制造的镜头看到所有的材料。

事实上,越来越多的
全球创新者社区正在

用生物学重新思考材料。

多家公司现在
正在种植蘑菇材料,

但不是真正的蘑菇——

使用菌丝体
(真菌的根系)

将农业副产品结合在一起。

这是一个被
描述为“自然胶水”的过程。

一种常见的方法
是制作一个 3-D 模具,


玉米秆或大麻等废弃作物填充,

加水,

等待几天让菌丝体
完全生长,

取出模具,

然后你就离开了 具有成长的 3-D 形式。

令人难以置信的是,我们可以使用生物体来培育
各种结构

从可以替代
鞋类塑料的泡沫

到没有动物的皮革状材料。

家具、地板——
目前都在制作原型。

真菌能够生长
出天然阻燃的材料,

无需任何化学物质。

它们是天然疏水的,

这意味着它们不会吸水。

它们的熔化
温度比塑料高。

聚苯乙烯可能需要数
千年才能降解。

蘑菇包装材料

可以在短短 30 天内
在您的后花园自然堆肥

生物体正在将废物

转化为具有成本竞争力、
性能匹配的材料

,这些材料可以开始替代塑料

和其他二氧化碳排放材料。

一旦我们开始
用活的有机体种植材料,

它就开始使以前
的制造方法看起来不合逻辑。

拿不起眼的房子砖。

水泥行业产生了全球
约 8%

的二氧化碳排放量。

这比每年所有的飞机
和轮船都要多。

水泥工艺
要求材料

在超过 2,000 华氏度的窑中烧制。

将此与 bioMASON 进行比较。

他们使用
土壤微生物将松散的聚集体(

沙子或碎石)转化为生物制造或生物水泥砖。

他们的过程在室温下发生

,只需几天。

想想:水培砖。

灌溉系统
将富含营养的水

注入

到已经接种了细菌的砖盘中。

细菌会

在每一粒沙子周围产生晶体,

将所有松散的颗粒锁定

在一起,形成坚固的砖块。

我们现在可以用

大自然优雅的方式种植建筑材料,

就像珊瑚礁一样。

这些生物制造的砖块
的强度几乎

是混凝土块的三倍。

与传统的水泥生产形成鲜明对比的
是,

它们储存的碳比制造的要多。

因此,如果我们可以用生物砖代替每年生产
的 1.2 万亿块烧制砖

,我们每年

可以

减少 8 亿吨二氧化碳排放。

(掌声)

除了用生物体培育材料外

我们甚至开始设计

鼓励它们生长的产品。

这来自于认识

到我们一直
试图边缘化的东西——生命——

实际上可能是
我们最伟大的合作者。

为此,我们
一直在探索

在我们自己的生态系统中培养健康微生物的所有方法。

一个很好的例子是

建筑师想象建筑物的表皮

像树皮一样运作。

但不能作为化妆品绿色层。

他们正在设计建筑树皮

作为不断发展的生态系统的宿主。

这些表面
结构旨在邀请生命进入

。如果我们将
目前抑制生命形式的相同能量

应用于培育生命,

我们会将城市丛林的负面形象

转变为真正
体现繁荣、活生生的生态系统的形象。

通过积极鼓励
与健康微生物的表面相互作用,

我们可以改善被动气候控制、

雨水管理

,甚至

通过降低
用于加热或冷却建筑物的能源来减少二氧化碳排放。

我们才刚刚
开始意识到

基于自然的技术的潜力。

我很高兴我们
开始设计和生物制造

一个新的材料世界。


开发不可再生资源

转向使用原始的
可再生生命。 我们没有

设计出生活,

而是用它和为它设计。

包装、时装、鞋类、
家具、建筑——

生物制造产品可以在
靠近需求中心的

地方种植,利用当地资源、更少的土地、能源,

甚至利用
工业废物流。

过去
,生物技术工具

是强大的

跨国化学
和生物技术公司的专利。

在上个世纪,
我们预计材料创新

将来自
杜邦、陶氏、巴斯夫等公司。

但是,这场 21 世纪的物质革命
是由

拥有小团队和有限资金的初创企业领导的。

顺便说一句,并不是所有的创始人
都有科学学位。

他们包括艺术家、
建筑师和设计师。 已经有

超过 10 亿美元
投资

于生物制造消费品的初创企业

我认为我们
别无选择,只能生物制造我们的未来。

从你穿的夹克

到你坐的椅子

到你住的家,

你设计的物质世界
不应该损害你的健康

或我们星球的健康。

如果材料不能

在家里回收或自然堆肥,

我们应该拒绝它们。

我致力于

通过展示当今所有令人惊叹的工作

以及促进

设计师、科学家、
投资者和品牌之间的更多互动来使这个未来成为现实。

因为我们需要一场物质革命,

而且我们现在就需要它。

谢谢你。

(掌声)