How does artificial intelligence learn Briana Brownell

Today, artificial intelligence helps
doctors diagnose patients,

pilots fly commercial aircraft,
and city planners predict traffic.

But no matter what these AIs are doing,
the computer scientists who designed them

likely don’t know exactly
how they’re doing it.

This is because artificial intelligence
is often self-taught,

working off a simple set of instructions

to create a unique array
of rules and strategies.

So how exactly does a machine learn?

There are many different ways
to build self-teaching programs.

But they all rely on the three
basic types of machine learning:

unsupervised learning, supervised
learning, and reinforcement learning.

To see these in action,

let’s imagine researchers are trying
to pull information

from a set of medical data containing
thousands of patient profiles.

First up, unsupervised learning.

This approach would be ideal
for analyzing all the profiles

to find general similarities
and useful patterns.

Maybe certain patients have similar
disease presentations,

or perhaps a treatment produces
specific sets of side effects.

This broad pattern-seeking approach
can be used to identify similarities

between patient profiles
and find emerging patterns,

all without human guidance.

But let’s imagine doctors are looking
for something more specific.

These physicians want
to create an algorithm

for diagnosing a particular condition.

They begin by collecting two sets of data—

medical images and test results
from both healthy patients

and those diagnosed with the condition.

Then, they input this data into a program

designed to identify features
shared by the sick patients

but not the healthy patients.

Based on how frequently
it sees certain features,

the program will assign values to those
features’ diagnostic significance,

generating an algorithm
for diagnosing future patients.

However, unlike unsupervised learning,

doctors and computer scientists have
an active role in what happens next.

Doctors will make the final diagnosis

and check the accuracy
of the algorithm’s prediction.

Then computer scientists can use
the updated datasets

to adjust the program’s parameters
and improve its accuracy.

This hands-on approach is called
supervised learning.

Now, let’s say these doctors want
to design another algorithm

to recommend treatment plans.

Since these plans
will be implemented in stages,

and they may change depending on each
individual’s response to treatments,

the doctors decide to use
reinforcement learning.

This program uses an iterative approach
to gather feedback

about which medications, dosages
and treatments are most effective.

Then, it compares that data
against each patient’s profile

to create their unique, optimal
treatment plan.

As the treatments progress and the program
receives more feedback,

it can constantly update
the plan for each patient.

None of these three techniques are
inherently smarter than any other.

While some require more or less
human intervention,

they all have their own strengths
and weaknesses

which makes them best suited
for certain tasks.

However, by using them together,

researchers can build complex AI systems,

where individual programs can
supervise and teach each other.

For example,
when our unsupervised learning program

finds groups of patients that are similar,

it could send that data to a connected
supervised learning program.

That program could then incorporate
this information into its predictions.

Or perhaps dozens of reinforcement
learning programs

might simulate potential patient outcomes

to collect feedback
about different treatment plans.

There are numerous ways to create
these machine-learning systems,

and perhaps the most promising models

are those that mimic the relationship
between neurons in the brain.

These artificial neural networks can use
millions of connections

to tackle difficult tasks like
image recognition, speech recognition,

and even language translation.

However, the more self-directed
these models become,

the harder it is for computer scientists

to determine how these self-taught
algorithms arrive at their solution.

Researchers are already looking at ways
to make machine learning more transparent.

But as AI becomes more involved
in our everyday lives,

these enigmatic decisions have
increasingly large impacts

on our work, health, and safety.

So as machines continue learning
to investigate, negotiate and communicate,

we must also consider how to teach them
to teach each other to operate ethically.

今天,人工智能帮助
医生诊断病人,

飞行员驾驶商用飞机
,城市规划者预测交通。

但无论这些人工智能在做什么
,设计它们的计算机科学家

可能并不确切
知道它们是如何做到的。

这是因为人工智能
通常是自学成才的,

通过一组简单的指令

来创建一系列独特
的规则和策略。

那么机器究竟是如何学习的呢?

有许多不同的方法
来构建自学程序。

但它们都依赖于
机器学习的三种基本类型:

无监督学习、监督
学习和强化学习。

为了看到这些在行动中,

让我们想象研究人员正试图

从一组包含
数千名患者资料的医疗数据中提取信息。

首先,无监督学习。

这种方法非常
适合分析所有配置文件

以找到一般相似性
和有用的模式。

也许某些患者有类似的
疾病表现,

或者治疗会产生
特定的副作用。

这种广泛的模式搜索方法
可用于识别

患者档案之间的相似性
并找到新出现的模式,

所有这些都无需人工指导。

但是让我们想象一下医生正在
寻找更具体的东西。

这些医生
想要创建一种

用于诊断特定疾病的算法。

他们首先收集两组数据——

健康患者

和确诊患者的医学图像和测试结果。

然后,他们将这些数据输入到一个程序中

,该程序旨在识别
患病患者

而非健康患者共享的特征。

根据
它看到某些特征的频率

,程序将为这些
特征的诊断意义分配值,

生成
用于诊断未来患者的算法。

然而,与无监督学习不同,

医生和计算机科学家
在接下来发生的事情中扮演着积极的角色。

医生将做出最终诊断

并检查
算法预测的准确性。

然后计算机科学家可以
使用更新的数据集

来调整程序的参数
并提高其准确性。

这种动手方法称为
监督学习。

现在,假设这些医生
想要设计另一种算法

来推荐治疗计划。

由于这些计划
将分阶段实施,

并且可能会根据每个
人对治疗的反应而改变

,因此医生决定使用
强化学习。

该计划使用迭代方法
来收集

有关哪些药物、剂量
和治疗最有效的反馈。

然后,它将这些数据
与每位患者的个人资料进行比较,

以创建他们独特的最佳
治疗计划。

随着治疗的进展和程序
收到更多反馈,

它可以不断更新
每个患者的计划。

这三种技术中没有一种
天生就比其他技术更聪明。

虽然有些需要或多或少的
人工干预,

但它们都有自己的长处
和短处

,这使得它们最
适合某些任务。

然而,通过将它们一起使用,

研究人员可以构建复杂的人工智能系统,

其中各个程序可以
相互监督和教学。

例如,
当我们的无监督学习程序

发现相似的患者组时,

它可以将该数据发送到连接的
监督学习程序。

然后该程序可以将
这些信息合并到其预测中。

或者,数十个强化
学习程序

可能会模拟潜在的患者结果,

以收集
有关不同治疗计划的反馈。

有很多方法可以创建
这些机器学习系统

,也许最有前途的模型

是那些模仿
大脑神经元之间关系的模型。

这些人工神经网络可以使用
数百万个连接

来处理
图像识别、语音识别

甚至语言翻译等困难任务。

然而,这些模型越是自我导向

,计算机科学家就越

难以确定这些自学
算法是如何得出其解决方案的。

研究人员已经在寻找
使机器学习更加透明的方法。

但随着人工智能越来越多地参与
到我们的日常生活中,

这些神秘的决定

对我们的工作、健康和安全产生了越来越大的影响。

因此,随着机器继续
学习调查、谈判和交流,

我们还必须考虑如何教它们
互相教以合乎道德地操作。