The hidden network that makes the internet possible Sajan Saini

In 2012,

a team of Japanese and Danish researchers
set a world record,

transmitting 1 petabit of data—

that’s 10,000 hours of high-def video—

over a fifty-kilometer cable, in a second.

This wasn’t just any cable.

It was a souped-up version
of fiber optics—

the hidden network that links our planet

and makes the internet possible.

For decades,

long-distance communications
between cities and countries

were carried by electrical signals,

in wires made of copper.

This was slow and inefficient,

with metal wires limiting data rates
and power lost as wasted heat.

But in the late 20th century,

engineers mastered a far superior method
of transmission.

Instead of metal,

glass can be carefully melted and
drawn into flexible fiber strands,

hundreds of kilometers long
and no thicker than human hair.

And instead of electricity,

these strands carry pulses of light,
representing digital data.

But how does light travel within glass,
rather than just pass through it?

The trick lies in a phenomenon known
as total internal reflection.

Since Isaac Newton’s time,

lensmakers and scientists have
known that light bends

when it passes between air and
materials like water or glass.

When a ray of light inside glass hits its
surface at a steep angle,

it refracts, or bends
as it exits into air.

But if the ray travels at a shallow angle,

it’ll bend so far that it stays trapped,

bouncing along inside the glass.

Under the right condition,

something normally transparent to light
can instead hide it from the world.

Compared to electricity or radio,

fiber optic signals barely degrade
over great distances—

a little power does scatter away,

and fibers can’t bend too sharply,

otherwise the light leaks out.

Today, a single optical fiber carries many
wavelengths of light,

each a different channel of data.

And a fiber optic cable contains hundreds
of these fiber strands.

Over a million kilometers of cable
crisscross our ocean floors

to link the continents—

that’s enough to wind around the
Equator nearly thirty times.

With fiber optics,

distance hardly limits data,

which has allowed the internet to evolve
into a planetary computer.

Increasingly,

our mobile work and play rely on legions
of overworked computer servers,

warehoused in gigantic data centers
flung across the world.

This is called cloud computing,

and it leads to two big problems:

heat waste and bandwidth demand.

The vast majority of internet traffic
shuttles around inside data centers,

where thousands of servers are connected
by traditional electrical cables.

Half of their running power
is wasted as heat.

Meanwhile, wireless bandwidth demand
steadily marches on,

and the gigahertz signals used in our
mobile devices

are reaching their data delivery limits.

It seems fiber optics has been too good
for its own good,

fueling overly-ambitious cloud and mobile
computing expectations.

But a related technology, integrated
photonics, has come to the rescue.

Light can be guided not
only in optical fibers,

but also in ultrathin silicon wires.

Silicon wires don’t guide light
as well as fiber.

But they do enable engineers to shrink

all the devices in a hundred kilometer
fiber optic network

down to tiny photonic chips that plug
into servers

and convert their electrical signals
to optical and back.

These electricity-to-light chips allow for
wasteful electrical cables in data centers

to be swapped out for
power-efficient fiber.

Photonic chips can help break open
wireless bandwidth limitations, too.

Researchers are working to replace mobile
gigahertz signals

with terahertz frequencies,

to carry data thousands of times faster.

But these are short-range signals:

they get absorbed by moisture in the air,

or blocked by tall buildings.

With tiny wireless-to-fiber photonic
transmitter chips

distributed throughout cities,

terahertz signals can be relayed over
long-range distances.

They can do so via a stable middleman,

optical fiber, and make hyperfast
wireless connectivity a reality.

For all of human history,

light has gifted us with sight and heat,

serving as a steady companion while we
explored and settled the physical world.

Now, we’ve saddled light with information
and redirected it

to run along a fiber optic superhighway—

with many different integrated
photonic exits—

to build an even more expansive,
virtual world.

2012 年,

一个由日本和丹麦研究人员组成的团队
创造了一项世界纪录,

通过 50 公里的电缆在一秒钟内传输 1 PB 的数据——

即 10,000 小时的高清视频

这不仅仅是任何电缆。

它是增强版
的光纤——

连接我们星球

并使互联网成为可能的隐藏网络。

几十年来,

城市和国家之间的长途通信

是通过电信号传输的

,使用铜线。

这是缓慢且低效的

,金属线限制了数据速率,
并且功率损失为废热。

但在 20 世纪后期,

工程师掌握了一种远为优越
的传输方法。

代替金属,

玻璃可以被小心地熔化并
拉制成柔韧的纤维束,

长达数百公里
,不比人的头发粗。

这些股线携带的不是电,而是
代表数字数据的光脉冲。

但是光是如何在玻璃中传播的,
而不仅仅是穿过它呢?

诀窍在于一种
称为全内反射的现象。

自艾萨克牛顿时代以来,

镜头制造商和科学家们就已经
知道

,光线在空气和水或玻璃等材料之间通过时会发生弯曲

当玻璃内部的一束光线
以陡峭的角度照射到其表面时,

它会折射或弯曲
,然后射入空气中。

但如果光线以较小的角度传播,

它会弯曲得如此之远,以至于它被困住,

在玻璃内部弹跳。

在适当的条件下,

通常对光透明的东西
可以将其隐藏起来。

与电或无线电相比,

光纤信号
在很远的距离上几乎不会衰减——

有一点功率确实会散射掉,

而且光纤不能过度弯曲,

否则光会泄漏出去。

今天,一根光纤承载许多
波长的光,

每一个都有不同的数据通道。

一根光缆包含数百
根这样的纤维束。

超过 100 万公里的电缆
纵横交错地穿过我们的海底

以连接各大洲——

这足以绕
赤道绕行近 30 次。

有了光纤,

距离几乎不会限制数据,

这使得互联网可以演变
成行星计算机。

我们的移动工作和娱乐越来越依赖于
大量过度工作的计算机服务器,这些服务器

存储在
遍布世界各地的巨大数据中心中。

这就是所谓的云计算

,它会导致两大问题:

热量浪费和带宽需求。

绝大多数互联网流量
在数据中心内穿梭

,数千台服务器
通过传统电缆连接。

它们一半的运行功率
被浪费为热量。

与此同时,无线带宽需求
稳步增长

,我们移动设备中使用的千兆赫信号

正在达到其数据传输极限。

似乎光纤
本身就太好了,

助长了过于雄心勃勃的云计算和移动
计算期望。

但是一种相关的技术,集成
光子学,已经来拯救了。


不仅可以在光纤中引导,

还可以在超细硅线中引导。

硅线不像光纤那样引导光

但它们确实使工程师能够

将一百公里光纤网络中的所有设备

缩小
为插入服务器

并将其电信号转换
为光信号并返回的微型光子芯片。

这些电到光芯片允许将
数据中心中浪费的电缆

换成
节能光纤。

光子芯片也可以帮助打破开放的
无线带宽限制。

研究人员正在努力用太赫兹频率替换移动
千兆赫兹信号

以将数据传输速度提高数千倍。

但这些都是短程信号:

它们会被空气中的水分吸收,

或者被高层建筑阻挡。

通过遍布城市的微型无线到光纤光子
发射器芯片

太赫兹信号可以
远距离中继。

他们可以通过稳定的中间人、光纤来做到这一点

,并使超高速
无线连接成为现实。

在整个人类历史中,

光赋予了我们视觉和热量,

在我们
探索和定居物理世界时,它作为稳定的伴侣。

现在,我们已经为光提供信息
,并将其重定向

到一条光纤高速公路——

具有许多不同的集成
光子出口——

以构建一个更加广阔的
虚拟世界。