Oxygens surprisingly complex journey through your body Enda Butler

You breathe in about 17,000 times per day.

It’s a process you rarely think about,

but behind the scenes, a huge coordinated
effort is playing out.

Your vital organs,

the gut,

brain,

bones,

lungs,

blood,

and heart

work together to sustain your life

by delivering oxygen
to tissues throughout your body.

Most of our cells need oxygen

because it’s one of the key ingredients
of aerobic respiration.

That’s the process that produces
a molecule called ATP,

which our cells use to power their
many incredible functions.

But getting oxygen throughout our
bodies is a surprisingly difficult task.

Gas enters cells by diffusing in
from their surroundings.

And that only happens efficiently
over tiny distances.

So for oxygen to reach the cells
within our bodies,

it needs a transportation network.

This is where our 20 trillion
red blood cells come in.

Each one contains about 270 million
oxygen-binding molecules of hemoglobin,

which is what gives blood its scarlet hue.

To make these cells, the body uses
raw materials

that become available from
the food we eat.

So in some ways, you could say
that oxygen’s journey through the body

really begins in the gut.

Here, in an amazing display of mechanical
and chemical digestion,

food gets broken down into
its smallest elements,

like iron, the building block
of hemoglobin.

Iron is carried through
the cardiovascular system

to the body’s hematopoietic tissue.

This tissue is the birthplace
of red blood cells,

and it can be found enclosed within
our bone marrow cavities.

The kidneys regulate
our levels of red blood cells

through the release of erythropoietin,

a hormone which causes marrow
to increase production.

Our bodies churn out roughly 2.5 million
red blood cells per second,

a number equivalent to the entire
population of Paris,

so that oxygen that makes it to the lungs
will have ample transportation.

But before oxygen
can even reach the lungs,

the brain needs to get involved.

The brainstem initiates breathing

by sending a message
through your nervous system,

all the way to muscles
of the diaphragm and ribs.

This causes them to contract,

thus increasing the space
inside the rib cage,

which allows the lungs to expand.

That expansion drops your lungs
internal air pressure,

making air rush in.

It’s tempting to think of our lungs
as two big balloons,

but they’re actually a lot more
complicated than that.

Here’s why.

The red blood cells in the vessels
within your lungs

can only pick up oxygen molecules
that are very close to them.

If our lungs were shaped like balloons,

air that was not in direct contact
with the balloon’s inner surface

couldn’t diffuse through.

Luckily, our lungs' architecture ensures
that very little oxygen is wasted.

Their interior is divided into
hundreds of millions

of miniature balloon-like projections
called alveoli

that dramatically increase
the contact area

to somewhere around 100 square meters.

The alveolar walls are made of
extremely thin flat cells

that are surrounded by capillaries.

Together, the alveolar wall and
capillaries make a two-cell thick membrane

that brings blood and oxygen close enough
for diffusion.

These oxygen-enriched cells are then
carried from the lungs

through the cardiovascular network,

a massive collection of blood vessels
that reaches every cell in the body.

If we laid this system out
end to end in a straight line,

the vessels would wrap around the Earth
several times.

Propelling red blood cells
through this extensive network

requires a pretty powerful pump,

and that’s where your heart comes in.

The human heart pumps an average
of about 100,000 times per day,

and it’s the powerhouse that ultimately
gets oxygen where it needs to go,

completing the body’s team effort.

Just think - this entire complex system
is built around the delivery

of tiny molecules of oxygen.

If just one part malfunctioned,
so would we.

Breathe in.

Your gut, brain, bones,
lungs, blood, and heart

are continuing their incredible act
of coordination that keeps you alive.

Breathe out.

你每天呼吸大约 17,000 次。

这是一个你很少想到的过程,

但在幕后,一场巨大的协调
努力正在上演。

您的重要器官

、肠道、

大脑、

骨骼、

肺、

血液

和心脏

协同工作,

通过向
全身组织输送氧气来维持您的生命。

我们的大多数细胞都需要氧气,

因为它
是有氧呼吸的关键成分之一。

这就是产生
一种叫做 ATP 的分子的过程

,我们的细胞用它来驱动它们的
许多不可思议的功能。

但是在我们的
身体中获取氧气是一项非常困难的任务。

气体通过从周围扩散进入细胞

而这只能
在很小的距离内有效地发生。

因此,氧气要到达
我们体内的细胞,

就需要一个运输网络。

这就是我们 20 万亿个
红细胞的来源。

每个红细胞都含有大约 2.7 亿
个血红蛋白氧结合分子,

这就是使血液呈现猩红色的原因。

为了制造这些细胞,身体

使用从
我们吃的食物中获得的原材料。

所以在某些方面,你可以
说氧气通过身体的旅程

真正开始于肠道。

在这里,在机械和化学消化的惊人展示中

食物被分解
成最小的元素,

比如铁,
血红蛋白的组成部分。


通过心血管系统

输送到身体的造血组织。

这种组织是红细胞的发源地

,可以发现它包含在
我们的骨髓腔内。

肾脏

通过释放促红细胞生成素来调节我们的红细胞水平,促红细胞

生成素是一种能导致
骨髓增加产量的激素。

我们的身体每秒产生大约 250 万个
红细胞,

这个数字相当于整个
巴黎的人口

,因此进入肺部的氧气
将有充足的运输。

但在氧气
甚至可以到达肺部之前

,大脑需要参与进来。

脑干

通过你的神经系统发送信息来启动呼吸,

一直到
横膈膜和肋骨的肌肉。

这导致它们收缩,

从而增加
了胸腔内的空间,

从而使肺部得以扩张。

这种膨胀会降低你的肺部
内部气压,

使空气涌入。

我们很容易将我们的肺部想象
成两个大气球,

但它们实际上
比这要复杂得多。

这就是为什么。 肺内

血管中的红细胞

只能吸收
离它们非常近的氧分子。

如果我们的肺的形状像气球,

那么与气球内表面不直接接触的空气

就无法扩散。

幸运的是,我们肺部的结构
确保很少浪费氧气。

它们的内部被分成
数亿个称为肺泡

的微型气球状突起

,这些突起
将接触面积显

着增加到大约 100 平方米。

肺泡壁

由被毛细血管包围的极薄扁平细胞组成。

肺泡壁和
毛细血管共同构成了一个两细胞厚的膜

,使血液和氧气足够接近以
进行扩散。

然后,这些富含氧气的细胞通过心血管网络
从肺部携带

,心血管网络

是到达身体每个细胞的大量血管集合。

如果我们将这个系统
首尾相连地布置成一条直线,

这些船只将绕地球
数次。

通过这个广泛的网络推动红细胞

需要一个非常强大的泵

,这就是你的心脏所在

。人类的心脏
平均每天泵送约 100,000 次

,它是最终
将氧气输送到需要去的地方的动力源,

完成 身体的团队努力。

试想一下——这整个复杂的系统
是围绕

着微小的氧分子的传递而建立的。

如果只有一个部分发生故障
,我们也会。

呼吸。

你的肠道、大脑、骨骼、
肺、血液和心脏

正在继续它们令人难以置信
的协调行为,让你保持活力。

呼。