Claws vs. nails Matthew Borths

Consider the claw.

Frequently found on four-limbed
animals around the world,

it’s one of nature’s most
versatile tools.

Bears use claws for digging
as well as defense.

An eagle’s needle-like talons can pierce
the skulls of their prey.

And lions can retract their massive claws
for easy movement,

before flicking them out to hunt.

Even the ancestors of primates used to
wield these impressive appendages,

until their claws evolved into nails.

So what in our evolutionary past led to
this manicured adaptation,

and what can nails do that their
sharper cousins can’t?

When nails first appeared in the fossil
record around 55.8 million years ago,

claws had already been present for
over 260 million years

in the ancestors of mammals and reptiles.

But despite the gulf of time between
their emergence,

these adaptations are both part of the
same evolutionary story.

Both nails and claws are made of keratin—

a tough, fibrous protein also found in
horns, scales, hooves and hair.

This protein is produced by a wedge of
tissue called the keratin matrix.

Rich in blood vessels and nutrients,

this protein factory produces an
endless stream of keratin,

which is tightly packed into cells
called keratinocytes.

These high-density cells give nails and
claws their trademark toughness.

Since nails evolved from claws,

both adaptations produce keratinocytes
in the same way.

The cells grow out from the matrix,

emerging from the skin where they die
and harden into a water-resistant sheath.

The primary difference between the
two keratin coverings

is really just their shape,

which depends on the shape of the bone
at the end of the animal’s digits.

In claws, the bed of keratinocytes
conforms to a narrow finger bone,

wrapping around the end of the digit
and radiating outwards

to form a cone-shaped structure.

Animals with nails, on the other hand,
have much broader digits,

and keratinocytes only cover the top
surface of their wide bones.

It’s possible that nails have simply
persisted as a side effect

of primates evolving wider,
more dexterous fingers.

But given what we know about the
habitats of our primate ancestors,

it’s more likely that nails came with
their own powerful advantages.

High in the forest canopy where
these primates lived,

wide finger bones and expansive
finger pads were ideal

for gripping narrow branches.

And nails improved that grip even further.

By providing a rigid surface
to press against,

primates could splay out their pads to
create even more contact with the trees.

Additionally, nails improved the
sensitivity of their digits

by providing an extra surface to detect
changes in pressure while climbing.

This combination of sensitivity
and dexterity

gave our ancestors the precise motor
control needed to snatch up insects,

pinch berries and seeds, and keep a
firm grip on slim branches.

The evolution of nails and the evolution
of opposable thumbs and toes

are closely linked.

And when our ancestors moved
down from the trees,

this flexible grasp enabled them to create
and wield complex tools.

Even if it was possible for wide
fingers to sport claws,

their sharp points would’ve
likely interfered

with these primates’ regular tasks.

Claws are ideal for piercing,
puncturing, and hooking,

but their points make grabbing difficult,
and potentially dangerous.

However, both claws and nails are
used in some unexpected ways.

Manatees use nails to grasp their food,

and researchers think elephant toenails
may sense vibrations

in the ground to help them hear.

Meanwhile, some primates,
like the aye-ayes of Madagascar,

have re-acquired claws.

They use these extra-long appendages
to tap branches and trunks,

while listening for hollow sections
with their bat-like ears.

When they hear an opening,
they burrow into the tree

and skewer grubs with their needle-like
middle finger.

We’ve only scratched the surface of all
the incredible ways nails and claws

are used throughout the animal kingdom.

But as for which of these
adaptations is better?

That’s an answer we may never nail down.

考虑爪子。

它经常
出现在世界各地的四肢动物身上

,是自然界最
通用的工具之一。

熊使用爪子进行
挖掘和防御。

老鹰的针状爪子可以刺穿
猎物的头骨。

狮子可以收回它们巨大的爪子
以便于移动,

然后再将它们弹开进行狩猎。

甚至灵长类动物的祖先也曾经
使用过这些令人印象深刻的附属物,

直到它们的爪子进化成指甲。

那么,在我们过去的进化过程中,是什么导致了
这种修剪整齐的适应,

而指甲又能做什么,而它们
更锋利的表亲却做不到呢? 大约 5580 万年前,

当指甲首次出现在化石
记录中时,

爪子

在哺乳动物和爬行动物的祖先中已经存在了超过 2.6 亿年。

但是,尽管它们出现之间存在时间鸿沟,但

这些适应都是
同一个进化故事的一部分。

指甲和爪子都是由角蛋白制成的——角蛋白

是一种坚韧的纤维蛋白,也存在于
角、鳞片、蹄和头发中。

这种蛋白质是由
称为角蛋白基质的楔形组织产生的。 这家蛋白质工厂

富含血管和营养物质,

生产
源源不断的角蛋白,这些角蛋白

被紧密地包装在
称为角质形成细胞的细胞中。

这些高密度细胞使指甲和
爪子具有标志性的韧性。

由于指甲是从爪子进化而来的,因此

两种适应性都
以相同的方式产生角质形成细胞。

细胞从基质中生长出来,

从皮肤中出现,在那里它们死亡
并硬化成防水鞘。

两种角蛋白覆盖

物之间的主要区别实际上只是它们的形状,


取决于动物手指末端骨骼的形状。

在爪子中,角质形成细胞床与
狭窄的指骨相吻合,

包裹在手指末端
并向外辐射

形成锥形结构。

另一方面,有指甲的动物
有更宽的手指

,角质形成细胞只覆盖
它们宽骨的顶面。

指甲可能只是

因为灵长类动物进化出更宽、
更灵巧的手指而导致的。


鉴于我们对灵长类祖先栖息

地的了解,指甲更有可能具有
其强大的优势。

在这些灵长类动物居住的森林树冠的高处

宽大的指骨和宽大的
指垫非常

适合抓住狭窄的树枝。

指甲进一步提高了抓地力。

通过提供一个坚硬的表面
来压靠,

灵长类动物可以张开它们的垫子,
与树木建立更多的接触。

此外,指甲

通过提供额外的表面来检测
攀爬时的压力变化,从而提高了手指的灵敏度。

这种敏感性
和灵巧性的结合

为我们的祖先
提供了捕捉昆虫、

捏浆果和种子以及
牢牢抓住纤细树枝所需的精确运动控制。

指甲的进化
与可对生的拇指和脚趾

的进化密切相关。

当我们的祖先
从树上下来时,

这种灵活的抓握能力使他们能够创造
和使用复杂的工具。

即使宽大的
手指可以运动爪子,

它们的锋利尖端也可能会

干扰这些灵长类动物的常规任务。

爪子非常适合刺穿、
刺穿和钩住,

但它们的尖端使抓取变得困难,
并且具有潜在的危险。

然而,爪子和钉子
都以一些意想不到的方式使用。

海牛用指甲抓住食物

,研究人员认为大象的脚趾甲
可能会感知

地面的振动以帮助他们听到。

与此同时,一些灵长类动物,
如马达加斯加的aye-ayes

,重新获得了爪子。

他们用这些超长的附
肢敲击树枝和树干,

同时
用蝙蝠状的耳朵倾听空心部分。

当它们听到开口的声音时,
它们会钻入树中

并用它们针状的中指串起幼虫

我们只是触及了整个动物王国中所有
令人难以置信的指甲和

爪子使用方式的表面。

但至于这些
改编中哪一个更好呢?

这是我们可能永远无法确定的答案。