The law of conservation of mass Todd Ramsey

Where does all this stuff come from?

This rock?

That cow?

Your heart?

Not the things themselves, mind you,
but what they’re made of:

the atoms that are
the fabric of all things.

To answer that question, we look to
the law of conservation of mass.

This law says take an isolated system

defined by a boundary that matter
and energy cannot cross.

Inside this system, mass,
a.k.a. matter and energy,

can neither be created nor destroyed.

The universe, to the best
of our knowledge,

is an isolated system.

But before we get to that, let’s look
at a much smaller and simpler one.

Here we have six carbon atoms,
12 hydrogen atoms,

and 18 oxygen atoms.

With a little energy,
our molecules can really get moving.

These atoms can bond together
to form familiar molecules.

Here’s water,

and here’s carbon dioxide.

We can’t create or destroy mass.

We’re stuck with what we’ve got,
so what can we do?

Ah, they have a mind of their own.

Let’s see. They’ve formed more
carbon dioxide and water, six of each.

Add a little energy, and we can get them
to reshuffle themselves to a simple sugar,

and some oxygen gas.

Our atoms are all accounted for:
6 carbon, 12 hydrogen, and 18 oxygen.

The energy we applied is now stored
in the bonds between atoms.

We can rerelease that energy

by breaking that sugar back
into water and carbon dioxide,

and still, same atoms.

Let’s put a few of our atoms aside
and try something a little more explosive.

This here is methane, most commonly
associated with cow flatulence,

but also used for rocket fuel.

If we add some oxygen
and a little bit of energy,

like you might get from a lit match,

it combusts into carbon dioxide,
water and even more energy.

Notice our methane started
with four hydrogen,

and at the end we still have four hydrogen
captured in two water molecules.

For a grand finale, here’s propane,
another combustible gas.

We add oxygen, light it up,
and boom.

More water and carbon dioxide.

This time we get three CO2s

because the propane molecule
started with three carbon atoms,

and they have nowhere else to go.

There are many other reactions
we can model with this small set of atoms,

and the law of conservation of mass
always holds true.

Whatever matter and energy
go into a chemical reaction

are present and accounted
for when it’s complete.

So if mass can’t be created or destroyed,

where did these atoms
come from in the first place?

Let’s turn back the clock and see.

Further, further, further, too far.

Okay, there it is.

The Big Bang.

Our hydrogen formed from
a high-energy soup of particles

in the three minutes that followed
the birth of our universe.

Eventually, clusters of atoms accumulated
and formed stars.

Within these stars, nuclear reactions
fused light elements,

such as hydrogen and helium,

to form heavier elements,
such as carbon and oxygen.

At first glance, these reactions
may look like they’re breaking the law

because they release
an astounding amount of energy,

seemingly out of nowhere.

However, thanks to
Einstein’s famous equation,

we know that energy is equivalent to mass.

It turns out that the total mass
of the starting atoms

is very slightly more
than the mass of the products,

and that loss of mass perfectly
corresponds to the gain in energy,

which radiates out from the star as light,
heat and energetic particles.

Eventually, this star went supernova

and scattered its elements across space.

Long story short, they found each other
and atoms from other supernovas,

formed the Earth,

and 4.6 billion years later
got scooped up to play their parts

in our little isolated system.

But they’re not nearly as interesting as
the atoms that came together to form you,

or that cow,

or this rock.

And that is why,
as Carl Sagan famously told us,

we are all made of star stuff.

所有这些东西是从哪里来的?

这块石头?

那头牛?

你的心中?

请注意,不是事物本身,
而是它们是由什么构成的:

构成万物的原子

为了回答这个问题,我们来
看看质量守恒定律。

这条定律说,采取一个

由物质
和能量无法跨越的边界定义的孤立系统。

在这个系统中,质量,也
就是物质和能量,

既不能被创造,也不能被摧毁。

据我们所知,宇宙

是一个孤立的系统。

但在我们开始之前,让我们
看一个更小更简单的。

在这里,我们有 6 个碳原子、
12 个氢原子

和 18 个氧原子。

只需一点能量,
我们的分子就可以真正开始运动。

这些原子可以结合
在一起形成熟悉的分子。

这里是水

,这里是二氧化碳。

我们不能创造或摧毁质量。

我们被我们所拥有的东西困住了,
那么我们能做些什么呢?

啊,他们有自己的想法。

让我们来看看。 它们形成了更多
的二氧化碳和水,各六种。

添加一点能量,我们可以让
它们重新洗牌,变成一种简单的糖

和一些氧气。

我们的原子全部占:
6 个碳、12 个氢和 18 个氧。

我们施加的能量现在存储
在原子之间的键中。

我们可以

通过将糖
分解回水和二氧化碳

,仍然是相同的原子来重新释放这种能量。

让我们把一些原子放在一边
,尝试一些更具爆炸性的东西。

这是甲烷,最常
与奶牛胀气有关,

但也用于火箭燃料。

如果我们添加一些氧气
和一点能量,

就像你可能从点燃的火柴中得到的那样,

它会燃烧成二氧化碳、
水甚至更多的能量。

请注意,我们的甲烷
从四个氢开始

,最后我们仍然有四个氢
捕获在两个水分子中。

对于压轴戏,这里是丙烷,
另一种可燃气体。

我们添加氧气,点亮它,
然后轰鸣。

更多的水和二氧化碳。

这次我们得到三个二氧化碳,

因为丙烷分子
以三个碳原子开始

,它们无处可去。

我们可以用这一小组原子模拟许多其他反应,

并且质量守恒定律
始终成立。

任何
进入化学反应的物质和能量

都存在,并
在反应完成时加以说明。

那么,如果质量不能被创造或消灭,那么

这些原子
最初是从哪里来的呢?

让我们时光倒流看看。

更进一步,更进一步,太远了。

好的,就是这样。

大爆炸。

我们的氢

在宇宙诞生后的三分钟内由高能粒子汤形成

最终,原子团聚集
并形成了恒星。

在这些恒星中,核反应

氢和氦等轻元素融合

成碳和氧等较重的元素。

乍一看,这些反应
可能看起来像是违反了法律,

因为它们释放
出惊人的能量,

似乎无处不在。

然而,由于
爱因斯坦著名的方程,

我们知道能量等于质量。

事实证明,起始原子的总质量

略大于产物的质量,质量

的损失完全
对应于能量的增加,能量

以光、
热和高能粒子的形式从恒星辐射出去。

最终,这颗恒星变成了超新星,

并将其元素分散到太空中。

长话短说,他们发现了彼此
以及来自其他超新星的原子,

形成了地球,

并在 46 亿年后被
挖掘出来,

在我们这个孤立的小系统中发挥作用。

但它们并不像
聚集在一起形成你的原子,

或者那头牛,

或者这块岩石那么有趣。

这就是为什么
正如卡尔·萨根(Carl Sagan)著名地告诉我们的那样,

我们都是由明星组成的。