Henry Lin What we can learn from galaxies far far away

Here are some images of clusters of galaxies.

They’re exactly what they sound like.

They are these huge collections of galaxies,

bound together by their mutual gravity.

So most of the points that you see on the screen

are not individual stars,

but collections of stars, or galaxies.

Now, by showing you some of these images,

I hope that you will quickly see that

galaxy clusters are these beautiful objects,

but more than that,

I think galaxy clusters are mysterious,

they are surprising,

and they’re useful.

Useful as the universe’s most massive laboratories.

And as laboratories, to describe galaxy clusters

is to describe the experiments

that you can do with them.

And I think there are four major types,

and the first type that I want to describe

is probing the very big.

So, how big?

Well, here is an image of a particular galaxy cluster.

It is so massive that the light passing through it

is being bent, it’s being distorted

by the extreme gravity of this cluster.

And, in fact, if you look very carefully

you’ll be able to see rings around this cluster.

Now, to give you a number,

this particular galaxy cluster

has a mass of over one million billion suns.

It’s just mind-boggling how
massive these systems can get.

But more than their mass,

they have this additional feature.

They are essentially isolated systems,

so if we like, we can think of them

as a scaled-down version of the entire universe.

And many of the questions that we might have

about the universe at large scales,

such as, how does gravity work?

might be answered by studying these systems.

So that was very big.

The second things is very hot.

Okay, if I take an image of a galaxy cluster,

and I subtract away all of the starlight,

what I’m left with is this big, blue blob.

This is in false color.

It’s actually X-ray light that we’re seeing.

And the question is, if it’s not galaxies,

what is emitting this light?

The answer is hot gas,

million-degree gas –

in fact, it’s plasma.

And the reason why it’s so hot

goes back to the previous slide.

The extreme gravity of these systems

is accelerating particles of gas to great speeds,

and great speeds means great temperatures.

So this is the main idea,

but science is a rough draft.

There are many basic properties about this plasma

that still confuse us,

still puzzle us,

and still push our understanding

of the physics of the very hot.

Third thing: probing the very small.

Now, to explain this, I need to tell you

a very disturbing fact.

Most of the universe’s matter

is not made up of atoms.

You were lied to.

Most of it is made up of something
very, very mysterious,

which we call dark matter.

Dark matter is something that
doesn’t like to interact very much,

except through gravity,

and of course we would like to learn more about it.

If you’re a particle physicist,

you want to know what happens
when we smash things together.

And dark matter is no exception.

Well, how do we do this?

To answer that question,

I’m going to have to ask another one,

which is, what happens when galaxy clusters collide?

Here is an image.

Since galaxy clusters are representative

slices of the universe, scaled-down versions.

They are mostly made up of dark matter,

and that’s what you see in this bluish purple.

The red represents the hot gas,

and, of course, you can see many galaxies.

What’s happened is a particle accelerator

at a huge, huge scale.

And this is very important,

because what it means is that very, very small

effects that might be difficult to detect in the lab,

might be compounded and compounded

into something that we could
possibly observe in nature.

So, it’s very funny.

The reason why galaxy clusters

can teach us about dark matter,

the reason why galaxy clusters

can teach us about the physics of the very small,

is precisely because they are so very big.

Fourth thing: the physics of the very strange.

Certainly what I’ve said so far is crazy.

Okay, if there’s anything stranger

I think it has to be dark energy.

If I throw a ball into the air,

I expect it to go up.

What I don’t expect is that it go up

at an ever-increasing rate.

Similarly, cosmologists understand why

the universe is expanding.

They don’t understand why it’s expanding

at an ever-increasing rate.

They give the cause of this

accelerated expansion a name,

and they call it dark energy.

And, again, we want to learn more about it.

So, one particular question that we have is,

how does dark energy affect the universe

at the largest scales?

Depending on how strong it is,

maybe structure forms faster or slower.

Well, the problem with the large-scale structure

of the universe is that it’s horribly complicated.

Here is a computer simulation.

And we need a way to simplify it.

Well, I like to think about this using an analogy.

If I want to understand the sinking of the Titanic,

the most important thing to do

is not to model the little positions

of every single little piece of the boat that broke off.

The most important thing to do is

to track the two biggest parts.

Similarly, I can learn a lot about the universe

at the largest scales

by tracking its biggest pieces

and those biggest pieces are clusters of galaxies.

So, as I come to a close,

you might feel slightly cheated.

I mean, I began by talking about

how galaxy clusters are useful,

and I’ve given some reasons,

but what is their use really?

Well, to answer this,

I want to give you a quote by Henry Ford

when he was asked about cars.

He had this to say:

“If I had asked people what they wanted,

they would have said faster horses.”

Today, we as a society are faced

with many, many difficult problems.

And the solutions to these
problems are not obvious.

They are not faster horses.

They will require an enormous amount of

scientific ingenuity.

So, yes, we need to focus,

yes, we need to concentrate,

but we also need to remember that

innovation, ingenuity, inspiration –

these things come

when we broaden our field of vision

when we step back

when we zoom out.

And I can’t think of a better way to do this than

by studying the universe around us. Thanks.

(Applause)

这是一些星系团的图像。

他们正是他们听起来的样子。

它们是这些巨大的星系集合,

通过相互的引力结合在一起。

所以你在屏幕上看到的大部分点

不是单个

恒星,而是恒星或星系的集合。

现在,通过向您展示其中的一些图像,

我希望您能很快看到

星系团是这些美丽的物体,

但更重要的是,

我认为星系团是神秘的,

它们令人惊讶,

而且很有用。

作为宇宙中最大的实验室很有用。

作为实验室,描述星系团

就是描述

你可以用它们做的实验。

我认为有四种主要

类型,我要描述的第一种类型

是探测非常大的。

那么,有多大?

好吧,这是一个特定星系团的图像。

它是如此巨大,以至于穿过它的光

被弯曲,它被

这个星团的极端引力扭曲了。

而且,事实上,如果你仔细观察,

你将能够看到这个星团周围的环。

现在,给你一个数字,

这个特殊的星系

团拥有超过一百万个太阳的质量。

这些系统的规模之大令人难以置信。

但是,除了质量之外,

它们还具有此附加功能。

它们本质上是孤立的系统,

所以如果我们愿意,我们可以将它们

视为整个宇宙的缩小版本。

以及我们可能

对大尺度宇宙的许多问题,

例如,重力是如何工作的?

可以通过研究这些系统来回答。

所以这是非常大的。

第二件事很热。

好吧,如果我拍一张星系团的照片,

然后减去所有的星光,

剩下的就是这个大的蓝色斑点。

这是假的颜色。

我们看到的实际上是 X 射线。

问题是,如果不是星系,

是什么发出这种光?

答案是热气体,

百万度的气体

——事实上,它是等离子体。

而它如此火爆的原因又

回到了上一张幻灯片。

这些系统的极端重力

正在将气体粒子加速到极快的速度,

而极快的速度意味着极高的温度。

所以这是主要思想,

但科学是一个粗略的草案。

这种等离子体的许多基本特性

仍然使我们感到困惑,仍然使

我们困惑,

并且仍然推动我们

对极热物理学的理解。

第三件事:探索非常小的。

现在,为了解释这一点,我需要告诉你

一个非常令人不安的事实。

宇宙的大部分物质

不是由原子组成的。

你被骗了。

其中大部分是由非常非常神秘的东西组成的

,我们称之为暗物质。

暗物质是一种
不太喜欢相互作用的东西,

除了通过引力之外

,我们当然想了解更多关于它的信息。

如果你是一名粒子物理学家,

你想知道
当我们把东西粉碎在一起时会发生什么。

暗物质也不例外。

那么,我们该怎么做呢?

要回答这个问题,

我将不得不问另一个问题,

即星系团碰撞时会发生什么?

这是一张图片。

由于星系团

是宇宙的代表性切片,因此是按比例缩小的版本。

它们主要由暗物质组成

,这就是你在蓝紫色中看到的。

红色代表热气体

,当然,你可以看到许多星系。

发生的事情是

一个巨大的、巨大的粒子加速器。

这非常重要,

因为这意味着

在实验室中可能难以检测到的非常非常小的影响可能

会被复合并复合

成我们
可能在自然界中观察到的东西。

所以,这很有趣。

星系团之所以

能教会我们关于暗物质的知识

,星系团之所以

能教会我们关于非常小的物理学,

正是因为它们是如此之大。

第四件事:很奇怪的物理学。

当然,到目前为止我所说的都是疯狂的。

好吧,如果有什么奇怪的东西,

我认为它一定是暗能量。

如果我把一个球扔到空中,

我希望它会飞起来。

我没想到的是它会

以不断增长的速度增长。

同样,宇宙学家理解

宇宙为什么在膨胀。

他们不明白为什么它

以不断增长的速度扩张。

他们给这种加速膨胀的原因起

了一个名字

,他们称之为暗能量。

而且,我们想进一步了解它。

因此,我们面临的一个特殊问题是,

暗能量如何

在最大尺度上影响宇宙?

根据它的强度,

结构形成的速度可能更快或更慢。

嗯,宇宙大尺度结构的问题

在于它非常复杂。

这是一个计算机模拟。

我们需要一种方法来简化它。

好吧,我喜欢用一个类比来思考这个问题。

如果我想了解泰坦尼克号的沉没,

最重要的

是不要对

断掉的每一个小船的小位置进行建模。

最重要的事情

是跟踪两个最大的部分。

同样,我可以通过跟踪最大的碎片来了解

最大尺度的宇宙,

而那些最大的碎片是星系团。

所以,当我接近尾声时,

你可能会觉得有点被骗了。

我的意思是,我从谈论

星系团如何有用开始

,我已经给出了一些理由,

但它们的真正用途是什么?

好吧,为了回答这个问题,

我想引用亨利福特

在被问及汽车时的一句话。

他这样说:

“如果我问人们他们想要什么,

他们会说更快的马。”

今天,我们作为一个社会面临

着许多许多困难的问题。

而这些问题的解决
方案并不明显。

他们不是更快的马。

他们将需要大量的

科学创造力。

所以,是的,我们需要集中注意力,

是的,我们需要集中注意力,

但我们也需要记住

创新、独创性、灵感——

当我们扩大视野

时,当我们缩小视野时,这些东西

就会出现。

我想不出

比研究我们周围的宇宙更好的方法了。 谢谢。

(掌声)